Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

We start with recalling one of the many definitions of the conjugate gradient method for the approximation of the solution x of a linear system Ax=b with symmetric and positive definite system matrix A. An advantage of this definition is that it is easy to state, and that it immediately shows the connection with the Lanczos method for approximation of eigenvalues of A. A disadvantage is that the actual algorithms for both the conjugate gradients and the Lanczos method do not follow too easily and require clever combination of several ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Axelsson, Solution of linear systems of equations: Iterative methods, in: Sparse Matrix Techniques, Copenhagen 1976 (V. A. Barker, ed.), Springer Verlag, Berlin, 1977, pp. 1–51.

    Chapter  Google Scholar 

  2. D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Second Edition, 2001.

    Google Scholar 

  3. F. Brezzi, On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers, RAIRO Anal. Numér. 8 (1974), 129–151.

    MathSciNet  MATH  Google Scholar 

  4. P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, in: Sparse Matrix Computations (J. R. Bunch, D. J. Rose, eds.), Academic Press, New York, 1976.

    Google Scholar 

  5. G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.

    MATH  Google Scholar 

  6. E. F. Kaasschieter, A practical termination criterion for the Conjugate Gradient method, BIT 28 (1988), 308–322.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Standard 45 (1950), 225–280.

    MathSciNet  Google Scholar 

  8. V. I. Lebedev, An iteration method for the solution of operator equations with their spectrum lying on several intervals, USSR Comput. Math. and Math. Phys. 9 (1969), 17–24.

    Article  Google Scholar 

  9. C. C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl. 10 (1972), 373–381.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J., 1980.

    MATH  Google Scholar 

  11. G. L. G. Sleijpen, A. van der Sluis, Further results on the convergence of conjugate gradients and Ritz values, Linear Algebra Appl. 246 (1996), 233–278.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. L. G. Sleijpen, H. A. van der Vorst, A Jacobi Davidson method for the eigenvalue problem, SIAM J. Matrix Anal. Appl. 17 (1996), 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. van der Sluis, H. A. van der Vorst, The rate of convergence of conjugate gradients, Numer. Math. 48 (1986), 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. van der Sluis, H. A. van der Vorst, The convergence behavior of Ritz values in the presence of close eigenvalues, Lin. Algebra and Appl. 88/89 (1987), 651–694.

    Article  Google Scholar 

  15. A. J. Wathen, B. Fischer, and D. J. Silvester, The convergence of iterative solution methods for symmetric and indefinite linear systems, in: ‘Numerical Analysis 1997’ (D. F. Griffiths, G. A. Watson, eds.), Pitman Research Notes in Mathematics Series, Addison Wesley Longman, Harlow, England, 1997, pp. 230–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandts, J., van der Vorst, H. (2004). The Convergence of Krylov Methods and Ritz Values. In: Křížek, M., Neittaanmäki, P., Korotov, S., Glowinski, R. (eds) Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18560-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18560-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62159-8

  • Online ISBN: 978-3-642-18560-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics