Skip to main content

Implicit Flux-Corrected Transport Algorithm for Finite Element Simulation of the Compressible Euler Equations

  • Chapter
Conjugate Gradient Algorithms and Finite Element Methods

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Even today, the accurate treatment of convection-dominated transport problems remains a challenging task in numerical simulation of both compressible and incompressible flows. The discrepancy arises between high accuracy and good resolution of singularities on the one hand and preventing the growth and birth of nonphysical oscillations on the other hand. In 1959 it was proven [6], that linear methods are restricted to be at most first order if they are to preserve monotonicity. Thus, the use of nonlinear methods is indispensable to overcome smearing by numerical diffusion without sacrificing important properties of the exact solution such as positivity and monotonicity. The advent of the promising methodology of flux-corrected transport (FCT can be traced back to the pioneering work of Boris and Book [3]. Even though their original FCT algorithm named SHASTA was a rather specialized one-dimensional finite difference scheme, the cornerstone for a variety of high-resolution schemes was laid. Strictly speaking, the authors recommended using a high-order discretization in regions of smooth solutions and switching to a low-order method in the vicinity of steep gradients. This idea of adaptive toggling between methods of high and low order was dramatically improved by Zalesak [3] who proposed a multi-dimensional generalization applicable to arbitrary combinations of high- and low-order discretizations but still remaining in the realm of finite differences. This barrier was first crossed by Parrott and Christie [21] who settled the idea of flux-correction in the framework of finite elements. Finally, FEM-FCT reached maturity by the considerable contributions of Löhner and his coworkers [16], [17]. Beside the classical formulation of Zalesak’s limiter in terms of element contributions, an alternative approach is available limiting the fluxes edge-by-edge [26], [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Anderson, Jr., Modern Compressible Flow, McGraw-Hill, 1990.

    Google Scholar 

  2. P. Arminjon, A. Dervieux, Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids, INRIA Research Report 1111 (1989).

    Google Scholar 

  3. J. P. Boris, D. L. Book, Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works, J. Comput. Phys. 11 (1973), 38–69.

    Article  ADS  MATH  Google Scholar 

  4. J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization in the finite element solution of hyperbolic problems, J. Comput. Phys. 70 (1987), 463–499.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. C. A. J. Fletcher, The group finite element formulation, Comput. Methods Appl. Mech. Engrg. 37 (1983), 225–243.

    Article  ADS  MathSciNet  Google Scholar 

  6. S. K. Godunov, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sbornik 47 (1959), 271–306.

    MathSciNet  Google Scholar 

  7. A. Harten, High resolution schemes for hyperbolic conservation laws. Discretization in the finite element solution of hyperbolic problems, J. Comput. Phys. 49 (1983), 357–393.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2, Wiley, 1984.

    Google Scholar 

  9. A. Jameson, Computational algorithms for aerodynamic analysis and design, Appl. Numer. Math. 13 (1993), 383–422.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Jameson, Positive schemes and shock modelling for compressible flows, Int. J. Numer. Meth. Fluids 20 (1995), 743–776.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Kuzmin, S. Turek, Flux correction tools for finite elements, J. Comput. Phys. 175 (2002), 525–558.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. D. Kuzmin, M. Möller, and S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping, Technical report No. 215, University of Dortmund, 2002, Int. J. Numer. Meth. Fluids, to appear.

    Google Scholar 

  13. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.

    Google Scholar 

  14. R. J. LeVeque, Simplified multi-dimensional flux limiting methods, Numerical Methods for Fluid Dynamics IV (1993), 175–190.

    ADS  MathSciNet  Google Scholar 

  15. R. Löhner, Adaptive CFD Techniques, Wiley, 2001.

    Google Scholar 

  16. R. Löhner, K. Morgan, J. Peraire, and M. Vahdati, Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations, Int. J. Numer. Meth. Fluids 7 (1987), 1093–1109.

    Article  MATH  Google Scholar 

  17. R. Löhner, K. Morgan, M. Vahdati, J. P. Boris, and D. L. Book, FEMFCT: combining unstructured grids with high resolution, Commun. Appl. Numer. Methods 4 (1988), 717–729.

    Article  MATH  Google Scholar 

  18. P. R. M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat Conduction. PhD thesis, University of Wales, Swansea, 1994.

    Google Scholar 

  19. P. R. M. Lyra, K. Morgan, J. Peraire, and J. Peiro, TVD algorithms for the solution of the compressible Euler equations on unstructured meshes, Int. J. Numer. Meth. Fluids 19 (1994, 827–847.

    Article  MATH  Google Scholar 

  20. K. Morgan, J. Peraire, Unstructured grid finite element methods for fluid mechanics, Reports on Progress in Physics 61 (1998), 569–638.

    Article  ADS  Google Scholar 

  21. A. K. Parrott, M. A. Christie, FCT applied to the 2-D finite element solution of tracer transport by single phase flow in a porous medium, Proc. ICFD Conf. on Numerical Methods in Fluid Dynamics, Oxford University Press (1986), 609–619.

    Google Scholar 

  22. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  23. J. Peraire, M. Vahdati, J. Peiro, and K. Morgan, The construction and behaviour of some unstructured grid algorithms for compressible flows. Numerical Methods for Fluid Dynamics Vol. IV, Oxford University Press (1993), 221–239.

    Google Scholar 

  24. P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43 (1981), 357–372.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. P. L. Roe, J. Pike, Efficient construction and utilisation of Approximate Riemann solutions, Comput. Methods Appl. Sci. Engrg. (1984), 499–518.

    Google Scholar 

  26. V. Selmin, Finite element solution of hyperbolic equations. I. One-dimensional case, INRIA Research Report 655 (1987).

    Google Scholar 

  27. V. Selmin, Finite element solution of hyperbolic equations. II. Two-dimensional case, INRIA Research Report 708 (1987).

    Google Scholar 

  28. G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978), 1–31.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. LNCSE 6, Springer, 1999.

    Google Scholar 

  30. S. Zalesak, Fully multi-dimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (1979), 335–362.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Möller, M., Kuzmin, D., Turek, S. (2004). Implicit Flux-Corrected Transport Algorithm for Finite Element Simulation of the Compressible Euler Equations. In: Křížek, M., Neittaanmäki, P., Korotov, S., Glowinski, R. (eds) Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18560-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18560-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62159-8

  • Online ISBN: 978-3-642-18560-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics