Skip to main content

Iterative Solution of Linear Variational Problems in Hilbert Spaces: Some Conjugate Gradients Success Stories

  • Chapter
Conjugate Gradient Algorithms and Finite Element Methods

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 644 Accesses

Abstract

Conjugate gradient was introduced in the early 50s (see refs. [1], [2]) as an iterative method for the solution of finite dimensional linear systems associated to matrices with special properties such as symmetry and positive definiteness. If round-off errors are not taken into account, the conjugate gradient method enjoys the finite termination property, namely: for any initialization, conjugate gradient algorithms will converge in d iterations at most, assuming that the matrix of the linear system, one is trying to solve, is a d × d one. Actually, for large problems (let say as soon as d > 102) the finite termination property has no practical interest, unlike an estimate of the speed of convergence involving the square-root of the condition number. In fact conjugate gradient algorithms can also be applied (theoretically, at least to the solution of linear problems in Hilbert spaces and by the late 60s a solid foundation for the convergence properties of such algorithms was in place (see [3] and the references therein. Such development was most important, since it opened the door to the efficient iterative solution of optimal control problems and of large classes of linear partial differential equations via an appropriate variational formulation in a well-chosen Hilbert space. Examples of such applications can be found in, e.g., [4]–[7], and of course, in various parts of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Hestenes, E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. National Bureau of Standards, Section B 49 (1952), 409–436.

    Article  MathSciNet  Google Scholar 

  2. G. H. Golub, D. P. O’Leary, Some history of the conjugate gradient and Lanczos algorithms: 1948-1976, SIAM Rev. 31 (1989), 50–102.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Daniel, The Approximate Minimization of Eunctionals, PrenticeHall, Englewood Cliffs, 1970.

    Google Scholar 

  4. R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys. 103 (1992), 189–221.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. R. Glowinski, J. L. Lions, Exact and approximate controllability for distributed parameter systems. Part 1, in: Acta Numerica 1994, Cambridge University Press, Cambridge, 1994, pp. 269–378.

    Google Scholar 

  6. R. Glowinski, J. L. Lions, Exact and approximate controllability for distributed parameter systems. Part 2, in: Acta Numerica 1995, Cambridge University Press, Cambridge, 1995, pp. 159–333.

    Google Scholar 

  7. R. Glowinski, Finite element methods for incompressible viscous flow, in: Handbook of Numerical Analysis IX (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 2003, pp. 3–1176.

    Google Scholar 

  8. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, NorthHolland, Amsterdam, 1978, reprinted as Vol. 40, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, 2002.

    MATH  Google Scholar 

  9. P. G. Ciarlet, Basic error estimates for elliptic problems, in: Handbook of Numerical Analysis II (P. G. Ciarlet and J. L. Lions, eds.), NorthHolland, Amsterdam, 1991, pp. 17–351.

    Google Scholar 

  10. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  11. R. Glowinski, H.B. Keller, and L. Reinhart, Continuation-conjugate gradient methods for the least-squares solution of nonlinear boundary value problems, SIAM J. Sci. Stat. Comp. 4 (1985), 793–832.

    MathSciNet  Google Scholar 

  12. J. L. Lions, Controllability, stabilization and perturbations for distributed systems, SIAM Review 30 (1988), 1–68.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. L. Lions, Controlabilité Exacte, Stabilisation et Perturbation des Systemes Distribués, Masson, Paris, 1988.

    Google Scholar 

  14. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971.

    Book  MATH  Google Scholar 

  15. R. Glowinski, C. H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact controllability of the wave equation, C. R. Acad. Sci. Paris, Ser. I, 311 (1990), 135–142.

    MATH  MathSciNet  Google Scholar 

  16. M. Asch, G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation — a numerical study, ESAIM Control, Optimization and Calculus of Variations 3 (1998), 163–212.

    MATH  MathSciNet  Google Scholar 

  17. J. L. Lions, J. E. Lagnese, Modeling, Analysis and Control of Thin Plates, Masson, Paris, 1988.

    Google Scholar 

  18. V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  19. J. Nečas, Equations aux Dérivées Partielles, Presses de 1’ Université de Montréal, Montréal, 1965.

    Google Scholar 

  20. L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay, Université Paris-Sud, Département de Mathématiques, Paris, 1978.

    Google Scholar 

  21. J. Cahouet, J. P. Chabard, Some fast 3-D solvers for the generalized Stokes problem, Internat. J. Numer. Methods Fluids 8 (1988), 369–395.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Joseph-Louis Lagrange and Jacques-Louis Lions for their contributions to Applied Mathematics and Variational Methods.

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glowinski, R., Lapin, S. (2004). Iterative Solution of Linear Variational Problems in Hilbert Spaces: Some Conjugate Gradients Success Stories. In: Křížek, M., Neittaanmäki, P., Korotov, S., Glowinski, R. (eds) Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18560-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18560-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62159-8

  • Online ISBN: 978-3-642-18560-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics