Skip to main content

Physical Aspects of Electron Beam Therapy

  • Chapter
Book cover Clinical Radiotherapy Physics

Abstract

For the clinical applications of electron beams, the physical behavior of electrons has to be well understood. In this chapter, we discuss the fundamental features of electron transport and theways in which they influence the dose distribution patterns. Electrons are more complex than photons in their transport behavior. The dose distribution for electron beams can be well documented for standard conditions of a beam incident on a unit-density medium with a flat surface. For nonstandard situations that may be encountered in actual clinical contexts, the interpretation and prediction of electron beam dose distributions pose many challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moliere, G., Theorie der Streuung schneller geladener Teilchen II, Mehrfach-und Vielfachstreuung, Z. Naturforsch., Vol. 3a, p78–97, 1948.

    Google Scholar 

  2. Bethe, H.A., Rose, M.E., and Smith, L.P., The multiple scattering of electrons, Proc. Am. Philos. Soc., Vol. 78, p573–585, 1938.

    CAS  Google Scholar 

  3. Heitler, W., The Quantum Theory of Radiation, Third Edition, p414, Oxford University Press, London, 1954.

    Google Scholar 

  4. Scott, W.T., The theory of small-angle multiple scattering of fast charged particles, Rev. Mod. Phys., Vol. 35, p2–313, 1963.

    Article  Google Scholar 

  5. Lanzl, L.H., Fundamental interactions of electrons with water, p21–24, in Proceedings of the Symposium on Electron Dosimetry and Arc Therapy, Paliwal, B. (Ed.), American Institute of Physics, New York, 1982.

    Google Scholar 

  6. Lanzl, L.H., Electron pencil beam scanning and its application in radiation therapy, p55–66, in Frontiers of Radiation Therapy, Oncology, Vol. 2, Karger, Basel, 1968.

    Google Scholar 

  7. Mandour, M.A., and Harder, D., Systematic optimization of the double scatterer system for electron beam field flattening, Strahlentherapie, Vol. 154, p328–322, 1978.

    PubMed  CAS  Google Scholar 

  8. Lax, I., and Brahme, A., On the collimation of high energy electron beams, Acta Radiol. Oncol., Vol. 19, p199–207, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Markus, B., Energie-Bestimmung schneller Elektronen auf Tiefendosiskurven, Strahlentherapie, Vol. 116, p280–286, 1961.

    PubMed  CAS  Google Scholar 

  10. Perry, D.J., and Holt, J.G., A model for calculating the effects of small inhomogeneities on electron beam dose distributions, Med. Phys., Vol. 7, p207–215, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Hogstrom, K.R., and Mills, M.D., Electron beam dose calculations, Phys. Med. Biol., Vol. 26, p445–459, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Werner, B.L., Khan, F.M., and Diebel, F.C., Model for calculating electron beam scattering in treatment planning, Med. Phys., Vol. 9, p180–187, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Jette, D., Pagnamenta, A., Lanzl, L.H., and Rozenfeld, M., The application of multiple scattering theory to therapeutic electron dosimetry, Med. Phys., Vol. 10, p141–146, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Storchi, P.R.M., and Huizenga, H., On anumerical approach of the pencil beam model, Phys. Med. Biol., Vol. 30, p467–473, 1985.

    Article  CAS  Google Scholar 

  15. Kirsner, S.M., Hogstrom, K.R., Kurup, R.G., and Moyers, M.F., Dosimetric evaluation in heterogeneous tissue of anterior electron beam irradiation for treatment of retinoblastoma, Med. Phys., Vol. 14, p772–779, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Lax, I., Brahme, A., and Andreo, P., Electron beam dose planning using Gaussian beams, Acta Radiol. Suppl., 364, Vol. 36, p49–59, 1983.

    Google Scholar 

  17. McParland, B.J., Cunningham, J.R., and Woo, M.K., The optimization of pencil beam widths for use in an electron pencil beam algorithm, Med. Phys., Vol. 14, p489–497, 1988.

    Article  Google Scholar 

  18. Jette, D., Electron dose calculation using multiple-scattering theory. A Gaussian multiple-scattering theory, Med. Phys., Vol. 15, p123–137, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Jette, D., Lanzl, L.H., Pagnamenta, A., Rozenfeld, M., Bernard, D., Kao, M., and Sabbas, A.M., Electron dose calculation using multiple scattering theory: Thin planar inhomogeneities, Med. Phys., Vol. 16, p712–725, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Huizenga, H., and Storchi, P.R.M., Numerical calculations of energy deposition of broad high energy electron beams, Phys. Med. Biol., Vol. 34, p1371–1396, 1989; Corrigendum, Phys. Med. Biol., Vol. 35, 1445, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Jette, D., Electron dose calculation using multiple-scattering theory: Localized inhomogeneities — a new theory, Med. Phys., Vol. 18, p123–132, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. McLellan, J., Sandison, G.A., Papiez, L., and Huda, W., A restricted angular scattering model for electron penetration in dense media, Med. Phys., Vol. 18, p1–6, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Shiu, A.S., and Hogstrom, K.R., Pencilbeamredefinitionalgorithm for electron dose distributions, Med. Phys., Vol. 18, p7–18, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Jette, D., and Walker, S., Electron beam dose calculation using multiple scattering theory: Evaluation of a new model for inhomogeneities, Med. Phys., Vol. 19, p1241–1254, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Petti, P.L., Differential pencil beam dose calculation for charged particles, Med. Phys., Vol. 19, p137–149, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Beteri, A.A., and Raeside, D.E., Optimal electron beam treatment planning for retinoblastoma using a new three-dimensional Monte Carlo based treatment planning system, Med. Phys., Vol 19, p125–135, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Ma, C.M., and Jiang, S.B., Monte Carlo modeling of electron beams from medical accelerator, Phys. Med. Biol., Vol.44, pp R157–189, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Morawska-Kaczynska, M., and Huizenga, H., Numerical calculations of energy deposition by broad high-energy electron beams, Phys. Med. Biol., Vol. 37, p2103–2106, 1992.

    Article  Google Scholar 

  29. Shiu, A.S. et al., Verification data for electron beam dose algorithms, Med. Phys., Vol. 19, p623–636, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. McKenzie, A.L., Air-gap correction in electron treatment planning, Phys. Med. Biol., Vol. 24, p628–635, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Ekstrand, K.E., and Dixon, R.L., Obliquely incident electron beams, Med. Phys., Vol. 9, p276–278, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Biggs, P.J., The effect of beam angulation on central axis depth dose for 4–29 MeV electrons, Phys. Med. Biol., Vol. 29, p1089–1096, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Khan, F.M., Deibel, F.C., and Soleimani-Meigooni, A., Obliquity correction for electron beams, Med. Phys., Vol. 12, p749–753, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Ulin, K., and Sternick, E.S., An isodose shift technique for obliquely incident electron beams, Med. Phys., Vol. 16, p905–910, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Task Group 21, Radiation Therapy Committee, American Association of Physicists in Medicine, A protocol for the determination of absorbed dose from high-energy photon and electron beams, Med. Phys., Vol. 10, p741–771, 1983.

    Article  Google Scholar 

  36. Biggs, P.J., Boyer, A.L., and Doppke, K.P., Electron dosimetry of irregular fields on the Clinac-18, Int. J. Radiat. Oncol. Biol. Phys., Vol. 5, p433–440, 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Purdy, J.M., Choi, M.C., and Feldman, A., Lipowitz metal shielding thickness for dose reduction of 6-20 MeV electrons, Med. Phys., Vol. 7, p251–253, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Lightstone, A.W., Videla., N., and Mason, D.L.D., Exceptional increases in electron cone output as the backup diaphragms are opened, Med. Phys., Vol. 24, pp 133–134, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Mills, M.D., Hogstrom, K.R., and Almond, P.R., Prediction of electron beam output factors, Med. Phys., Vol. 9, p60–68, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. McParland, B.J., A parametrization of the electron beam output factors for a 25 MeV linear accelerator, Med. Phys., Vol. 14, p666–669, 1987.

    Google Scholar 

  41. McParland, B.J., A method of calculating output factors for arbitrarily shaped electron fields, Med. Phys., Vol. 16, p88–93, 1989.

    Article  PubMed  CAS  Google Scholar 

  42. 42. McParland, B.J., An analysis of equivalent fields for electron beam central axis dose calculation, Med. Phys., Vol. 19, p901–906, 1992.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Choi, M.C., Purdy, J.A., Gerbi, B.J., Abrath, F.G., and Glasgow, G.P., Variation in output factors caused by secondary blocking for 7-16 MeV electron beams, Med. Phys., Vol. 6, p137–139, 1979.

    Article  PubMed  CAS  Google Scholar 

  44. Khan, F.M.,and Higgins, P.D., Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields, Phys. Med. Biol., Vol. 44, pp N77–N80, 1999.

    Article  PubMed  CAS  Google Scholar 

  45. Giarattano, J.C., Duerkes, R.J., and Almond, P.R., Lead shielding thickness for dose reduction of 7–20 MeV electrons, Med. Phys., Vol. 2, p336–337, 1975.

    Article  Google Scholar 

  46. Khan, F.M., Moore, V.C., and Levitt, S.H., Field shaping in electron therapy, Br. J. Radiol., Vol. 49, p883–886, 1976.

    Article  PubMed  CAS  Google Scholar 

  47. Khan, F.M., Werner, B.L., and Deibel, F.C., Lead shielding for electrons, Med. Phys., Vol. 8, p712–713, 1981.

    Article  PubMed  CAS  Google Scholar 

  48. Asbell, S.O., Sill, J., Lightfoot, D.A., and Brady, N.L., Individualized eye shield for use in electron beam therapy as well as low energy photon irradiation, Int. J. Radiat. Oncol. Biol. Phys., Vol. 6, p519–521, 1980.

    Article  PubMed  CAS  Google Scholar 

  49. Saunders, J.E., and Peters, V.G., Backscattering frommetals in superficial therapy with highenergy electrons, Br. J. Radiol., Vol. 47, p467–470, 1974.

    Article  PubMed  CAS  Google Scholar 

  50. Gagnon, W.F., and Cundiff, J.H., Dose enhancement from back-scattered radiation at tissue metal interfaces irradiated with high energy electrons, Br. J. Radiol., Vol. 53, p466–470, 1980.

    Article  PubMed  CAS  Google Scholar 

  51. Klavenhagen, S.C., Lambert, G.D., and Arbari, A., Backscattering in electron therapy for energies between 3 and 35 MeV, Phys. Med. Biol., Vol. 27, p363–373, 1982.

    Article  Google Scholar 

  52. Frank, H., Zur Vielfachstreuung und R, cksdiffusion schneller Elektronen nach Durchgang durch dicke Schichten, Z. Naturforsch., Vol. 14a, p247–261, 1959.

    CAS  Google Scholar 

  53. Bjarngard, B.E., McCall, R.C., and Berstein, I.A., Lithium fluoride teflon thermoluminescent dosimeters, p308–316, in Proceedings of First International Conference on Luminescence Dosimetry, Stanford, Attix, F.H. (Ed.), Conference no. 650637, U.S. Atomic Energy Commission, Washington, D.C., 1967.

    Google Scholar 

  54. Dutreix, J., and Bernard, M., Dosimetry at interface for high-energy x and ? rays, Br. J. Radiol., Vol. 39, p205–210, 1966.

    Article  PubMed  CAS  Google Scholar 

  55. Khan, F.M., Sewchand, W., and Levitt, S.H., Effect of air space on depth dose in electron beam therapy, Radiology, Vol. 126, p249–252, 1978.

    PubMed  CAS  Google Scholar 

  56. Jamshedi, A., Kuchnir, F.J., and Reft, C.S., Determination of the source position for the electron beams from a high energy linear accelerator, Med. Phys., Vol. 13, p942–948, 1986.

    Article  Google Scholar 

  57. Laughlin, J.S., High-energy electron treatment planning for inhomogeneities, Br. J. Radiol., Vol 38, p143–147, 1965.

    Article  PubMed  CAS  Google Scholar 

  58. Boone, M.L.M., Jardine, J.H., Wright, A.E., and Tapley, N., High-energy electron dose perturbations in the regions of tissue heterogeneity. I. In vivo dosimetry, Radiology, Vol. 88, p1136–1145, 1967.

    PubMed  CAS  Google Scholar 

  59. Almond, P.R., Wright, A.E., and Boone, M.L.M., High-energy electron dose perturbations in regions of tissue heterogeneity. II. Physical models of tissue heterogeneities, Radiology, Vol. 88, p1146–1153, 1967.

    PubMed  CAS  Google Scholar 

  60. Pohlit, W., Calculated and measured dose distributions in inhomogeneous materials and in patients, Ann. N.Y. Acad. Sci., Vol. 161, p189–197, 1969.

    Article  PubMed  CAS  Google Scholar 

  61. Brenner, M., Karjalainen, P., Rytila, A., and Jungar, H., The effects of inhomogeneities on dose distribution of high-energy electrons, Ann. N.Y. Acad. Sci., Vol. 161, p189–197, 1969.

    Article  Google Scholar 

  62. Shrott, K.R., Ross, C.K., Bielajew, A.F., and Rogers, D.W.O., Electron beam dose distributions near standard inhomogeneities, Phys. Med. Biol., Vol. 31, p235–249, 1986.

    Article  Google Scholar 

  63. Hogstrom, K.R., Dosimetry of electron heterogeneities, p532–561, in Radiation Oncology Physics — 1986, Medical Physics Monograph 15, Keriakes, J.G., Elson, H.R., and Born, C.G. (Eds.), American Institute of Physics, New York, 1987.

    Google Scholar 

  64. Amdur, R.J., Kalbaugh, K.J., Ewald, L.M., Parsons, J.T., Mendenhall, W.M., Bova, F.J., and Million, R.R., Radiation therapy of skin cancer near the eye: Kilovoltage X-rays versus electrons, Int. J. Radiat. Oncol. Biol. Phys., Vol. 23, p769–779, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Lovett, R.D., Perez, C.A., Shapiro, S.J., and Garcia, D.M., External irradiation of epithelial skin cancers, Int. J. Radiat. Oncol. Biol. Phys., Vol. 19, p235–242, 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Williams, P.C., Hunter, R.D., and Jackson, S.M., Whole body electron therapy in mycosis fungoides — a successful translational technique achieved by modification of an established linear accelerator, Br. J. Radiol., Vol. 52, p302–307, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. AAPM Task Group 30, AAPM Monograph 23, Total Skin Electron Therapy and Dosimetry, American Association of Physicists in Medicine, Radiation Therapy Committee, Report of Task Group 30, American Institute of Physics, New York, 1988.

    Google Scholar 

  68. Almond, P.R., Total skin electron irradiation and dosimetry, p296–332, in Radiation Oncology Physics — 1986, Medical Physics Monograph 15, Keriakes, J.G., Elson, H.R., and Born, C.G., (Eds.), American Institute of Physics, New York, 1987.

    Google Scholar 

  69. Page, V., Garner, A., and Karzmark, C.J., Patient dosimetry in electron treatment of large superficial lesions, Radiology, Vol. 94, p635–641, 1970.

    PubMed  CAS  Google Scholar 

  70. Goldson, A.L., Preliminary clinical experience with intraoperative radiotherapy, J. Natl. Med. Assoc., Vol. 70, p493–495, 1978.

    PubMed  CAS  Google Scholar 

  71. Biggs, P.J., Epp, E.R., Ling, C.L., Novack, D.H., and Michaels, H.B., Dosimetry, field shaping and other considerations for intraoperative electron therapy, Int. J. Radiat. Oncol. Biol. Phys., Vol. 7, p875–884, 1981.

    Article  PubMed  CAS  Google Scholar 

  72. McCullough, E.C., and Anderson, J.A., The dosimetric propertiesofanapplicator system for intraoperative electron-beam therapy utilizing a Clinac-18 accelerator, Med. Phys., Vol. 9, p261–268, 1982.

    Google Scholar 

  73. McCullogh, E.C., and Biggs, P.J., Intraoperative electron therapy, p333–347, in Radiation Oncology Physics — 1986, Medical Physics Monograph 15, Keriakes, J.G., Elson, H.R., and Born, C.G., (Eds.), American Institute of Physics, New York, 1987.

    Google Scholar 

  74. Hogstrom, K.R., Boyer, A.L., Shiu, A.S., Ocharn, G., Kirsher, S.M., Krispel, F., and Rich, T., Design of metallic electron beam cones for an intraoperative therapy linear accelerator, Int. J. Radiat. Oncol. Biol. Phys., Vol. 18, p1227–1332, 1990.

    Article  Google Scholar 

  75. Nelson, C.E., Cook, R., and Rafkel, S., The dosimetric properties of an intraoperative radiation therapy applicator system, Med. Phys., Vol. 16, p794–799, 1989.

    Article  PubMed  CAS  Google Scholar 

  76. Palta, J.R., Biggs, P.J., Hazle, J.D., Huq, M.S., Dahl, R.A., Ochran, T.G., Soen, J., Dobelbower, Jr., R.R., and McCullough, E.C., Intraoperative electron beam therapy: technique, dosimetry, and dose specification: Report of Task Force 48, Radiation Therapy Committee, American Association of Physicists in Medicine, Int. J. Radiat. Oncol. Biol. Phys., Vol. 33, pp725–746, 1995.

    Article  PubMed  CAS  Google Scholar 

  77. Dobblebower, R.R. and Abe, M. (Eds.), Intraoperative Radiation Therapy, CRC Press, Boca Raton, Florida, 1989.

    Google Scholar 

  78. Calvo, F.A., Hoekstra, H.J., and Lehnert, T., Intraoperative radiotherapy: 20 years of clinical experience, technological development and consolidation of results (Review), European J. Surg. Oncol., Vol. 26, Spplement A, pp S1–S4, 2000.

    Article  Google Scholar 

  79. Valentini, V., Balducci, M., Morganti, A.G., De Giorgi, U., and Fiorentini, G., Intraoperative radiotherapy: current thinking, European J. of Surg. Oncol., Vol. 28, pp180–185, 2001

    Article  Google Scholar 

  80. Mills, M.D., Fajardo, L. C., Wilson, D. L., Daves, J. L. and Spanos, W.J., Commissioning of a mobile electron accelerator for intraoperative radiotherapy, J. Appl. Clin. Med. Phys., Vol. 2, pp121–130, 2001.

    Article  PubMed  CAS  Google Scholar 

  81. Meurk, M.L., Goer, D.A., Spalek, G., and Cook, T., The Mobetron: A new concept for IORT, pp 65–70, in Intraoperative Radiotherapy in the Treatment of Cancer, (ED: Vaeth, J.M.), Karger, Basel, 1997.

    Chapter  Google Scholar 

  82. Leavitt, D.D., Peacock, L.M., Gibbs, F.A., and Stewart, J.R., Electron arc therapy: Physical measurements and treatment planning techniques, Int. J. Radiat. Oncol. Biol. Phys., Vol. 11, p985–999, 1985.

    Article  Google Scholar 

  83. Hogstrom, K.R., and Leavitt, D., Dosimetry of arc electron therapy, p265–295, in Radiation Oncology Physics — 1986, Medical Physics Monograph 15, Keriakes, J.G., Elson, H.R., and Born, C.G., (Eds.), American Institute of Physics, New York, 1987.

    Google Scholar 

  84. Khan, F.M., Calibration and treatment planning of electron beam arc therapy, p249–266, in Electron Dosimetry and Arc Therapy, Proceedings of Symposium, Paliwal, B. (Ed.), American Institute of Physics, New York, 1982.

    Google Scholar 

  85. Levitt, D.D., Stewart, J.R., Moeller, J.H., and Early, L., Optimization of electron arc therapy by multi-vane collimator control, Int. J. Radiat. Oncol. Biol. Phys., Vol. 16, p489–496, 1989.

    Article  Google Scholar 

  86. Lam, K.S., Lam, W.C., O’Neill, M.J., and Zinreich, E., Electron arc therapy: Beam datarequirements and treatment planning, Clin. Radiol., Vol. 38, p379–383, 1987.

    Article  PubMed  CAS  Google Scholar 

  87. Pla, M., Podgorsak, E.B., Pla, C., and Freeman, C.R., Determination of secondary collimator shape in electron arc therapy, Phys. Med. Biol., Vol. 38, p999–1006, 1993.

    Article  Google Scholar 

  88. Pla, M., Pla, C., and Podgorsak, E.B., The influence of beam parameters on percentage depth dose in electron arc therapy, Med. Phys., Vol. 15, p49–55, 1988.

    Article  PubMed  CAS  Google Scholar 

  89. Pla, M., Podgorsak, E.B., Freeman, C.R., Souhami, L., and Guerra, J., Physical aspects of the angle ß concept in electron arc therapy, Int. J. Radiat. Oncol. Biol. Phys., Vol. 20, p1331–1339, 1991.

    Article  CAS  Google Scholar 

  90. Olivares-Pla, M., Podgorsak, E.B., and Pla, C., Electron arc dose distributions as a function of beam energy, Med. Phys., Vol. 24, pp127–132, 1997

    Article  PubMed  CAS  Google Scholar 

  91. Boyer, A.L., Fullerton, G.D., and Mira, J.G., An electron beam pseudoarc technique for irradiation of large areas of chest wall and other curved surfaces, Int. J. Radiat. Oncol. Biol. Phys., Vol. 8, p1969–1974, 1982.

    Article  PubMed  CAS  Google Scholar 

  92. McKenzie, M.R., Freeman, C.R., Pla, M., Guerra, J., Souhami, L., Pla, C., and Podgorsak, E.B., Clinical experience with pseudoarc therapy, Br. J. Radiol., Vol. 66, p234–240, 1993.

    Article  PubMed  CAS  Google Scholar 

  93. Boyer, A.L., Fullerton, G.D., Mira, J.G., and Mok, E.C., An electron beam pseudo arc technique, p267–293, in Electron Dosimetry and Arc Therapy, Proceedings of Symposium, Paliwal, B. (Ed.), American Institute of Physics, New York, 1982.

    Google Scholar 

  94. Pla, M., Podgorsak, E.B., and Pla, C., Electron dose rate and photon contamination in electron arc therapy, Med. Phys., Vol. 16, p692–697, 1989.

    Article  PubMed  CAS  Google Scholar 

  95. Bagne, F., Adjacent fields of high-energy X-rays and electrons, Phys. Med. Biol., Vol. 23, p1186–1191, 1978.

    Article  PubMed  CAS  Google Scholar 

  96. Bhaduri, D., Choi, M.C., Weaver, J., and Agarwal, S.K., Matching of electron fields on flat surfaces, J. Am. Assoc. Med. Dosim., Vol. 9, p12–16, 1984.

    Google Scholar 

  97. Frass, B.A., Tepper, J.E., Glatstein, E., and van de Geijn, J.A., Clinical use of a matchline wedge for adjacent megavoltage radiation field line matching, Int. J. Radiat. Oncol. Biol. Phys., Vol. 9, p209–216, 1983.

    Article  Google Scholar 

  98. Kalend, A., Zwicker, R.D., Wu, A., and Sternick, E.S., A beam edge modifier for abutting electron fields, Med. Phys., Vol. 12, p793–798, 1985.

    Article  PubMed  CAS  Google Scholar 

  99. Kurup, R.G., Wang, S., and Glasgow, G.P., Field matching of electron beams using plastic wedge penumbra generators, Phys. Med. Biol., Vol. 37, p145–153, 1992.

    Article  PubMed  CAS  Google Scholar 

  100. Kurup, R.G., Glasgow, G.P., and Leybovich, L.B., Design of electron beam wedges for increasing penumbra abutting fields, Phys. Med. Biol., Vol. 38, p667–674, 1993.

    Article  Google Scholar 

  101. McKenzie, A.L., A simple method for matching electron beams in radiotherapy, Phys. Med. Biol., Vol. 43, pp3465–3478, 1998.

    Article  PubMed  CAS  Google Scholar 

  102. Lachance, B., Tremblay, D., and Pouliot, J., Anew penumbra generator for electronfields matching, Med. Phys., Vol. 24, pp485–495, 1997.

    Article  PubMed  CAS  Google Scholar 

  103. Papiez, E., Dunscombe, P.B., and Malakar, K., Matching photon and electronfieldsinthetreatment of head and neck tumors, Med. Phys., Vol. 19, p335–341, 1992.

    Article  PubMed  CAS  Google Scholar 

Additional Reading

  1. Task Group 25, Radiation Therapy Committee, American Association of Physicists in Medicine, Clinical Electron Beam Dosimetry, Med. Phys., Vol. 18, p73–109, 1991.

    Article  Google Scholar 

  2. ICRU Report 35, Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV, International Commission on Radiological Units and Measurements, Bethesda, Maryland, 1984.

    Google Scholar 

  3. Klavenhagen, S.C., Physics of Electron Beam Therapy, HPA Medical Physics Handbook 13, Adam Hilger, Bristol, 1985.

    Google Scholar 

  4. Keriakes, J.G., Elson, H.R., and Born, C.G. (Eds.), Radiation Oncology Physics — 1986, Medical Physics Monograph 15, American Institute of Physics, New York, 1987.

    Google Scholar 

  5. Vaeth, J.M., and Meyer, J.L. (Eds.), The Role of High Energy Electrons in the Treatment of Cancer, Karger, Basel, 1991.

    Google Scholar 

  6. Jayaraman, S., Pathways and pitfalls in treatment planning with external beams: the role of the clinical physicist, Radiographics, Vol. 8, p.1147–1170, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jayaraman, S., Lanzl, L.H. (2004). Physical Aspects of Electron Beam Therapy. In: Clinical Radiotherapy Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18549-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18549-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62155-0

  • Online ISBN: 978-3-642-18549-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics