Skip to main content

Instruments for Radiation Detection

  • Chapter
Clinical Radiotherapy Physics

Abstract

Radiation is detected by measurement of the effect of its interactions with target materials. The radiation-induced effect on a detector produces a signal that can be interpreted to give the radiation quantity of interest. We already discussed the use of ionization chambers and calorimeters for this purpose in Chapter 11. In this chapter, we will provide more details on ionization chambers and also discuss other devices used for radiation detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Failla, G., Measurement of tissue dose in terms of the same unit for all ionizing radiations, Radiology, Vol. 29, pp202–215, 1937.

    CAS  Google Scholar 

  2. Loevinger, R., Extrapolation chamber for the measurement of beta sources, J. Sci. Instrum., Vol. 24, pp907–914, 1953.

    Article  CAS  Google Scholar 

  3. Rase, S., and Pohlit, W., Eine Extrapolationskammer als Standardmessegerat for energiereiche Photonen und Electronen Strahlung, Strahlentherapie, Vol. 119, pp266–275, 1962.

    PubMed  CAS  Google Scholar 

  4. Bohm, J., and Schneider, U., Review of extrapolation chamber measurements of beta rays and low energy x-rays, Rad. Prot. Dosim., Vol. 14, pp193–198, 1986.

    Google Scholar 

  5. Soares, C.G., Calibration of ophthalmic applicators at NIST: A revised approach, Med. Phys., Vol. 18, pp787–793, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Manson, J., Verkley, D., Purdy, J.A., and Oliver, G.D., Measurement of surface dose using buildup curves obtained with an extrapolation chamber, Radiology, Vol. 115, pp473–474, 1975.

    PubMed  CAS  Google Scholar 

  7. Klavenhagen, S.C., Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber, Phys. Med. Biol., Vol. 36, pp239–253, 1991.

    Article  Google Scholar 

  8. Zankowski, C.E., and Podgorsak, E.B., Calibration of photon and electron beams with an extrapolation chamber, Med. Phys., Vol. 24, pp497–503, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. DeBlois, F., Abdel-Rahman, W., Seuntjens, J.P., and Podgorsak, E.B., Measurement of absorbed dose with a bone equivalent extrapolation chamber, Med. Phys., Vol. 29, pp433–439, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Becker, K., Photographic Film Dosimetry, The Focal Press, London and New York, 1966.

    Google Scholar 

  11. AAPM Task Group 28, Radiotherapy Port Film Quality, AAPM Report 24, American Association of Physicists in Medicine, American Institute of Physics, New York, 1988.

    Google Scholar 

  12. Beddar, A.S., Mackie, T.R., and Attix, F. H., Water equivalent plastic scintillation detectors for high-energy beam dosimetry, I. Physical characteristics and Theoretical Considerations, Phys. Med. Biol., Vol. 37, pp1883–1900, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Beddar, A.S., Mackie, T.R., and Attix, F. H., Water equivalent plastic scintillation detectors for high-energy beam dosimetry, II Properties and Measurements, Phys. Med. Biol., Vol. 37, pp1901–1913, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Beddar, A.S., A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines, Phys. Med. Biol., Vol. 39, pp253–263, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Fowler, J.F., Solid state electrical conductivity dosimeters, In Radiation Dosimetry, Vol. II, (Ed.: Attix, F.H. and Roesch, W.), Academic Press, New York, 1966.

    Google Scholar 

  16. Soubra, M., Cygler, J., and MacKay, G.F., Evaluation of a dual bias metal-oxide-silicon field effect transistor detector as a radiation dosimeter, Med. Phys., Vol. 21, pp567–572, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Ramani, R., Russell, S., and O’Brien, P., Clinical dosimetry using MOSFETs, Int. J. Radiat. Oncol. Biol. Phys., Vol. 37, pp956–964, 1997.

    Article  Google Scholar 

  18. Francescon, P., Cora, S., Cavendon, C., Scalchi, P., Reccanello, S., and Colombo, F., Use of a new type of radiochromic film, a new parallel-plate micro-chamber, MOSFETs, and TLD 800 microcubes in the dosimetry of small beams, Med. Phys., Vol. 25, pp503–511, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Scalchi, P, and Fransescon, P., Calibration of a MOSFET detection system for 6-MV in-vivo dosimetry, Int. J Radiat. Oncol. Biol. Phys., Vol. 40, pp987–993, 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Planskoy, B., Evaluation of diamond radiation dosemeters, Phys. Med. Biol., Vol. 25, pp519–532, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Hoban, P.W., Heydarian, M., Beckham, W.A., and Beddoe, A.H., Dose rate dependence of a PTW diamond detector in the dosimetry of a 6 MV photon beam, Phys. Med. Biol., Vol. 39, pp1219–1229, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Vatnitsky, S., and Jarvinesan, H., Application of a natural diamond detector for the measurement of relative dose distributions in radiotherapy, Phys. Med. Biol., Vol. 38, pp173–184, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Rustgi, S. N., Application of a diamond detector to brachytherapy dosimetry, Phys. Med. Biol., Vol. 43, pp2085–2094, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Izewska, J and Andreo, P., The IAEA/WHO TLD postal programme for radiotherapy hospitals, Radiother. Oncol., Vol. 54, pp65–72, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Eisenlohr, H.H. and Jayaraman, S., IAEA-WHO cobalt-60 teletherapy dosimetry programme using mailed LiF dosimeters, A survey of results obtained during 1970–1975, Phys. Med. Biol., Vol. 22, pp18–28, 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Pfalzner, P.M., and Jayaraman, S., TLD intercomparison of absorbed dose in cobalt-60 teletherapy, Acta Radiologica (Ther., Phys., Biol.), Vol. 9, pp501–512, 1970.

    CAS  Google Scholar 

  27. Fricke, H., and Hart, E., Chemical Dosimetry, pp167–239, In Radiation Dosimetry, Vol. II, Ed. Attix, F.H., and Roesch, W., Academic Press, New York, 1966.

    Google Scholar 

  28. Ellis, S C: The dissemination of absorbed dose standards by chemical dosimetry. Mechanism and useof the Fricke dosimeter, in Ionization Radiation Metrology, in Dosimetryof Ionizing Radiation, Vol. II, Ed., Kase, K., Attix, F.H., Bjarngard, B. E., Academic Press, Orlando, 1987.

    Google Scholar 

  29. McKeever, S.W.S., Optically stimulated luminescence dosimetry, SPIE, Vol. 3534, pp531–541, 1999.

    Article  CAS  Google Scholar 

  30. Akselrod, M.S. and McKeever, S.W.S., A radiation dosimetry system using pulsed optically stimulated luminescence, Rad. Prot. Dosim., Vol. 81, pp167–176, 1999.

    Article  CAS  Google Scholar 

  31. Akselrod, M.S. and McKeever, S.W.S., Radiation dosimetry using pulsed optically stimulated luminescence of aluminium oxide, Rad. Prot. Dosim., Vol. 84, pp317–320, 1999.

    Article  Google Scholar 

  32. McKeever, S.W.S., Akselrod, M.S., Colyott, L.E., Agersnap Larsen, N., Polf, J.C., and Whitley, V.H., Characterization of Al2O3 for use in thermally stimulated and optically stimulated luminescence dosimetry, Radiat. Prot. Dosim., Vol. 84, pp163–168, 1999.

    Article  CAS  Google Scholar 

  33. Technology Monitor, Optically stimulated luminescence dosimeters, Health Phys., Vol. 80, pp108–109, 2001.

    Google Scholar 

  34. Bötter-Jensen, L., Bullur, E., Duller, G.A.T., and Murray, A.S., Advances in luminescence instrument systems, Radiation Measurements, Vol. 32, pp523–528, 2000.

    Article  Google Scholar 

  35. Olsson, L.E., Petersson, S., Ahlgren, L. and Mattsson, S, 1989, Ferrous suplphate gels for determination of absorbed dose dostribution using MRI technique: basic studies, Phys. Med. Biol., Vol. 34, pp43–52, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Day, M.J., Radiation dosimetry using nuclear magnetic resonance: An introductory review, Phys. Med. Biol., Vol. 35, pp1605–1609, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Olsson, L.E., Fransson, A., Ericson, A, and Mattsson, S, MR imaging of absorbed dose distributions for radiotherapy using ferrous sulphate gels, Phys. Med. Biol., Vol. 35, pp1623–1631, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Maryanski, M.J., Shultz, R.J., Ibbott, G.S., Gatenby, J.C., Xie. J., Horton, D., Gore, J.C., Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter, Phys. Med. Biol., Vol. 39, pp14337–1455, 1994.

    Article  Google Scholar 

  39. Chu, W.C., (Invited review paper) Radiation dosimetry using Fricke-infused gels and magnetic resonance imaging, Proc. Natl. Sci. Counc. ROC(B), Vol. 25, pp1–11, 2001.

    CAS  Google Scholar 

  40. Maryanski, M.J., Gore, J.C., Kennan, R.P., and Shultz, R.J., NMR relaxation enhancement in gels ploymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI, Magn. Reson. Imaging, Vol. 11, pp253–258, 1993.

    Article  PubMed  CAS  Google Scholar 

  41. Kron, T., and Pope, J.M., Dose distribution measurements in superficial x-ray beams using NMR dosimetry, Phys. Med. Biol., Vol. 39, pp1337–1349, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Maryanski, M.J., Ibbott, G.S., Eastman, P., Shultz, R.J., and Gore, J.C., Radiation therapy dosimetry using magnetic-resonance imaging of polymer gels, Med. Phys., Vol. 23, pp699–705, 1996.

    Article  PubMed  CAS  Google Scholar 

  43. Oldham, M., Baustert, I., Lord, C., Smith, T.A.D., McJury, M., Warrington, A.P., Leach, M.O., and Webb, S., An investigation into the dosimetry of nine-field tomotherapy irradiation using BANG-gel dosimetry, Phys. Med. Biol., Vol. 43, pp1113–1132, 1998.

    Article  PubMed  CAS  Google Scholar 

  44. Ibbott, G.S., Maryanski, M.J., Eastman, P., Holcomb, S.D., Zhang, Y.S., Avison, R.G., Sanders, M., and Gore, J.C., 3D visualization and measurement of conformal dose-distributions using MRI of BANG-gel dosimeters, Int. J. Radiat. Ocol. Biol. Phys., Vol. 38, pp1097–1103, 1997.

    Article  CAS  Google Scholar 

  45. Schultz, R.J., deGuzman, A.F., Nguyen, D.B., and Gore, J.C., Dose-response curves for Frickeinfused agarose gels as obtainedby nuclear magnetic resonance, Phys. Med. Biol., Vol. 35, pp1611–1622, 1990.

    Article  Google Scholar 

  46. Hazle, J.D., Hefner, L., Nyerick, C.E., Wilson, L., Boyer, A., Dose-response characteristics of a ferrous-sulphate-doped gelatin system for determining radiation absorbed dose distributions by magnetic resonance imaging (Fe MRI), Phys. Med. Biol., Vol. 36, pp1117–1125, 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Oldham, M., McJury, M., Baustert, I.B., Webb, S., Leach, M.O., Improving calibration accuracy in gel dosimetry, Phys. Med. Biol., Vol. 43, pp2709–2720, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Chu, R.D.H., Van Dyk, G, Lewis, D.F., O’Hara, K.P., Buckland, B.W., and Dinelle, F., GafChromic dosimetry media: A new high dose, thin film, routine dosimeter and dose mapping tool, Radiat. Phys. Chem., Vol. 35, pp767–773, 1990.

    CAS  Google Scholar 

  49. Muench, P.J., Meigooni, A.S., Nath, R., McLaughlin, W.L., Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLD’s used for brachyterapy dosimetry, Med. Phys., Vol. 18, pp769–775, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. McLaughlin, W.L., Chen Yun-Dong, Soares, C.G., Miller, A., Van Dyk, G., Lewis, D.F., Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams, Nucl. Instr. and Meth., Vol. A302, pp165–176, 1991

    CAS  Google Scholar 

  51. AAPM Task Group 55, Radiochromic Dosimetry: Recomendations of AAPM Radiation Therapy Committee Task Group 55, Med. Phys., Vol. 25, pp2093–2115, 1998.

    Article  Google Scholar 

  52. Meigooni, A.S., Sanders, M.F. and Ibbott, G.S. Dosimetric characteristics of an improved radiochromic film, Med. Phys., Vol. 23; 11, pp1883–1888, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Klassen, N.V., van der Zwan, L., and Cygler, J., GafChromic MD-55: Investigated as a precision dosimeter, Med. Phys. Vol. 24, pp1924–1934, 1997.

    Article  PubMed  CAS  Google Scholar 

  54. Stevens, M.A., Turner, J.R., Hugtenburg, R.P., and Butler, P.H., High-resolution dosimetry using radiochromic film and a document scanner, Phys. Med. Biol., Vol. 41, pp2357–2365, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu, Y., Kirov, A.S., Mishra, V., Meigooni, A.S., Williamson, J.F., Quantitative evaluation of radiochromic film response for two-dimensional dosimetry, Med. Phys. Vol. 24; pp223–231, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Caporali, C., Guerra, A.S., Laitano, R.F., Pimpinella, M., Possenti, L., Study of the characteristics of a radiochromic film for dosimetry of small radiation beams, Physica Medica, Vol. XIII; pp87–89, 1997.

    Google Scholar 

  57. Reinstein, L.E., Gluckman, G.R., and Meek, A.G., A rapid colour stabilization technique for radiochromic film dosimetry, Phys. Med. Biol., Vol. 43, pp2703–2708, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Reinstein, L.E., and Gluckman, G.R., Comparisonof dose response of radiochromic film measured with He-Ne laser, broadband, and filtered light densitometers, Med. Phys., Vol. 24, pp1531–1533, 1997.

    Article  PubMed  CAS  Google Scholar 

Additional Reading

  1. Knoll, G.F., Radiation Detection and Measurement, 3rd edition, John Wiley & Sons, New York, 2000.

    Google Scholar 

  2. Shani, Gad, Radiation Dosimetry Instrumentation and Methods, CRC Press, Boca Raton, Florida, USA, 1991.

    Google Scholar 

  3. Attix, F H: Introduction to Radiological Physics and Radiation Dosimetry. John Wiley’ sons, New York, 1986.

    Book  Google Scholar 

  4. Kase, K. R., Attix, F.H. and Bjarngard, B. E., (Eds.), Dosimetry of Ionizing Radiation, Vol. II, Academic Press, Orlando, Florida, USA, 1987.

    Google Scholar 

  5. Kase, K. R., Attix, F.H. and Bjarngard, B. E., (Eds.), Dosimetry of Ionizing Radiation, Vol. III, Academic Press, New York, Hartcourt College Publishers, 1990.

    Google Scholar 

  6. Furetta, C., and Pao-Shan Weng, Operational Thermoluminescence Dosimetry, Imperial College Press, London, 1998.

    Google Scholar 

  7. Marshall, T.O., and Dennis, J.A., (Ed.) Proceedings of 8th International. Conference on Solid State Dosimetry, Oxford, 1986, Radiat. Prot. Dosim., Vol. 17, 1986.

    Google Scholar 

  8. Kron, T., Thermoluminescence Dosimetry and its application in Medicine — Physics, materials, and equipment, Sciences in Med., Vol. 17, pp175–199, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jayaraman, S., Lanzl, L.H. (2004). Instruments for Radiation Detection. In: Clinical Radiotherapy Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18549-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18549-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62155-0

  • Online ISBN: 978-3-642-18549-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics