Skip to main content

Quantification of Radiation Field: Radiation Units and Measurements

  • Chapter
  • 471 Accesses

Abstract

In practical applications of radiation, the intensity of the radiation is a spatial variable, i. e., there is a radiation field. The radiation field comprises both the primary radiation coming directly from a source and any secondary emissions (Compton electrons, scattered photons, characteristic X-rays, etc.) arising due to the interactions of the primary radiation with matter. The radiation-induced processes of ionization and excitation of atoms and molecules in the irradiated medium cause the radiation effects that are observed. Charged particles such as electrons, protons, and alpha particles can ionize the medium directly; they are referred to as directly ionizing radiations. Photons and neutrons ionize indirectly by setting in motion, in various interactions, charged particles that do ionize directly. Hence, they are referred to as indirectly ionizing radiations. The purpose in radiation dosimetry is to correlate any radiation effect with the amount of radiation delivered. As a corollary, we would like to deliver a controlled amount of radiation so as to produce an intended effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ICRU, Radiation Quantities and Units, ICRU Report 33, International Commission on Radiation Units and Measurements, Washington, D.C., 1980.

    Google Scholar 

  2. ICRU, Fundamental Quantities and Units for Ionizing Radiation, ICRU Report 60, International Commission on Radiation Units and Measurements, Bethesda, Maryland, USA, 1998.

    Google Scholar 

  3. NCRP, SI Units in Radiation Protection and Measurements, NCRP Report 82, National Council on Radiation Protection and Measurements, Bethesda, Maryland, 1985.

    Google Scholar 

  4. ICRU, Average Energy Required to Produce an Ion Pair, ICRU Report 31, International Commission on Radiation Units and Measurements, Washington, D.C., 1979.

    Google Scholar 

  5. Wyckoff, H.O., and Attix, F.H., Design of Free-Air Ionization Chambers, National Bureau of Standards, Handbook 64, U.S. Government Printing Office, Washington, D.C., 1957.

    Google Scholar 

  6. Loevinger, R., Realizationofthe unit of exposure:Cavity chambers, in Ionization Radiation Metrology, Casnati, E. (Ed.), Editrice Compositari, Bologna, Italy, 1977, p103.

    Google Scholar 

  7. Lanzl, L.H., World radiation therapy dosimetry network, Int. J. Radiat. Oncol. Biol. Phys., Vol. 8, pp1607–1615, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Shalek, R.J., Humphries, L.J., and Hanson, W.F., The American Association of Physicists in Medicine Regional Calibration Laboratory System, in Proceedings of a meeting on Traceability for Ionizing Radiation Measurements, NBS Special Publication 609, National Bureau of Standards, Washington, D.C., 1981.

    Google Scholar 

  9. Lanzl, L.H., and Rozenfeld, M., Evaluation of the need for radiation calibrations in the United States of America, National and International Standardization of Radiation Dosimetry, Proceedings of a Symposium, Atlanta, Dec 5-9, 1977, Vol. 1, p193–197, International Atomic Energy Agency, Vienna, Austria, 1978.

    Google Scholar 

  10. AAPM Task Group, Protocol for 40-300 kV X-ray beam dosimetry in radiotherapy and radiobiology, Med. Phys., Vol. 28, pp1868–893, 2001.

    Google Scholar 

  11. AAPM Task Group 21, A protocol for the determination of absorbed dose from high energy photon and electron beams, Med. Phys., Vol. 10, p741–767, 1983, and Erratum for Figure 6, Med. Phys., Vol. 11, pp213, 1984.

    Article  Google Scholar 

  12. Shultz, R.J., Almond, P.R., Kutcher, G., Loevinger, R., Nath, R., Rogers, D.W.O., Suntharalingham, N., Wright, K.A., and Khan, F.M., Clarification of the AAPM Task Group 21 Protocol, Med. Phys., Vol. 13, pp756–759, 1986.

    Google Scholar 

  13. AAPM Task Group 25, Clinical Electron Beam Dosimetry, Med. Phys., Vol. 18, pp73–109, 1991.

    Article  Google Scholar 

  14. IAEA, Absorbed Dose Determination in Photon and Electron Beams: An International Code of Practice, IAEA Technical Report Series 277, International Atomic Energy Agency, Vienna, Austria, 1987.

    Google Scholar 

  15. NACP, Procedures in external radiation therapy dosimetry with electron and photon beams with maximum energies between 1 and 50 MeV, Acta Radiol. Oncol., Vol. 19, pp55–79, 1980.

    Article  Google Scholar 

  16. NACP, Supplement to the recommendations of the Nordic Association of Clinical Physics: Electron beams with mean energies at the phantom surface below 15 MeV, Acta Radiol. Oncol., Vol. 20, pp401–415, 1981.

    Article  Google Scholar 

  17. SEFM, Procedimientos recommendatos para la dosimetria de fotones y electrones de energias comprendid entre1MeV y 50MeV enradiotherapia de haces externos, Publication No.1, Sociedad Espanola de Fisica Medica, Madrid, 1984.

    Google Scholar 

  18. SEFM, Supplemento al documento SEFM No. 1, 1984, Procedimientos recommendatos para la dosimetria de fotones y electrones de energias comprendid entre 1 MeV y 50 MeV en radiotherapia de haces externos, Publication No. 2, Sociedad Espanola de Fisica Medica, Madrid, 1987.

    Google Scholar 

  19. AAPM Task Group 51, Protocol for clinical reference dosimetry of high-energy photon and electron beams, Med. Phys., Vol. 26, pp1847–1870, 1999.

    Article  Google Scholar 

  20. International Atomic Energy Agency (IAEA), Absorbed Dose Determination in External Beam Radiotherapy Based on Standards of Absorbed-Dose-to-Water, An International Code of Practice for dosimetry, Technical Report Series No. 398, IAEA, Vienna, 2001.

    Google Scholar 

  21. ICRU, Report 64, Dosimetry of High-Energy Photon Beams Based on Standards of Absorbed Dose to Water, International Commission on Radiological Units and Measurements, Journal of the ICRU, Vol. 1, 2001.

    Google Scholar 

  22. Holt, J.G., Fleischman, R.C., Perry, D.J., and Buffa, A., Examination of the factors Ac and Aeq for cylindrical ion chambers used in Co 60 beams, Med. Phys., Vol. 6, pp280–284, 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Burlin, T.E., Cavity chamber theory, Chapter 8, Radiation Dosimetry, Vol. 1, Attix, F.H., and Roesch, W.C. (Eds.), Academic Press, New York, 1968.

    Google Scholar 

  24. Spencer, L.V., and Attix, F.H., A theory of cavity ionization, Radiat. Res., Vol. 3, pp239–254, 1955.

    Article  PubMed  CAS  Google Scholar 

  25. AAPM Task Group 39, The calibration of and use of parallel-plate ionization chambers for dosimetry of electron beams, Med. Phys., Vol. 21, pp1251–1260, 1994.

    Article  Google Scholar 

  26. International Atomic Energy Agency (IAEA), The use of plane parallel ionization chambers in high energy electron and photon beams: An international code of practice for dosimetry, Technical Report Series No. 381, IAEA, Vienna, 1997.

    Google Scholar 

  27. Dutreix, J., and Dutreix, A., Etude comparee d’une serie de chambres d’ionisation dans des faisceaux d’electrons de 20 et 10 MeV, Biophysik, Vol. 3, pp249–258, 1966.

    Article  PubMed  CAS  Google Scholar 

  28. Hettinger, G., Petterson, C., and Svensson, H., Calibration of thimble chambers exposed to a photon or electron beam from a betatron, Acta Radiol. (Therapy), Vol. 6, pp61–64, 1967.

    Article  CAS  Google Scholar 

  29. Weatherburn, H., and Stedeford, B., Effective measuring position for cylindrical ionization chambers when used for electron beam dosimetry, Br. J. Radiol., Vol. 50, pp921–922, 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Domen, S.R., A sealed water calorimeter for measuring absorbed dose, J. Res. Natl. Inst. Stand. Technol., Vol. 99, pp121–141, 1994.

    Article  CAS  Google Scholar 

  31. C K Ross and N V Klassen, Water calorimetry for radiation dosimetry (Review Article), Phys. Med. Biol., Vol. 41, 91–29, 1996. ( Determination of absolute dose to water within a relative uncertainty of 0.5 to 1.0% is possible.

    Article  Google Scholar 

  32. DuSautoy, A.R., The UK primary standard calorimeter for photon beam absorbed dose measurement, Phys. Med. Biol. Vol. 41, pp137–151, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. McEwen, M.R., DuSautoy, A.R., and Williams, A.J., The calibration of therapy level electron beam ionization chambers in terms of absorbed dose to water, Phys. Med. Biol., Vol. 43, pp2503–2519, Year 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Seuntjens, J.P.,and Palmans, H., Correction factors and performance of 4°ealed water calorimeter, Phys. Med. Biol., Vol. 44, pp627–646, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Palmans, H., Mondelaers, W., and Thierens, H., Absorbed dose beam quality correction factors kQ for the NE2571 chamber in a 5 MV and 10 MV photon beam, Phys. Med. Biol., Vol. 44, pp647–663, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. McEwen M.R., et al., Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers, Phys. Med. Biol., Vol. 46, pp741–755, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Huq, S. M., and Andreo, P., Reference dosimetry in clinical high-energy photon beams: Comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols, Med. Phys., Vol. 28. pp46–54, 2001

    Article  CAS  Google Scholar 

  38. Dohm, O.S., Christ, G., Nusslin, F., Schule, E., Bruggmoser, G., Electron dosimetry based on the absorbed dose to water concept: A comparison of the AAPM TG-51 and DIN 6800-2 protocols, Med. Phys., Vol. 28, pp2258–2264, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Stewart, K.J. and Seuntjens, J.P., Comparing calibration methods of electron beams using planeparallel chambers with absorbed-dose to water based protocols, Med. Phys., Vol. 29, pp284–289, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Araki, F. and Kubo, H.D., Comparison of high-energy photon and electron dosimetry for various dosimetry protocols, Med. Phys., Vol.29, pp857–868, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. Tailor, R.C., and Hanson, W.F., Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies, Med. Phys., Vol. 29, pp1464–1472, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. AAPM Task Group No. 43, Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43, Med. Phys., Vol. 22, pp209–234, 1995.

    Article  Google Scholar 

  43. Lamperti, P, Mitch, M., Soares, C., and Seltzer, S., Update on NIST Brachytherapy standards and calibrations, BIPM document CCRI (I)/01-15 (Bureau International des Poids ed Mesures, SËvres, France), 2001.

    Google Scholar 

  44. Berger, M.J., Energy deposition in water by photons from point isotropic sources, J. Nucl. Med., Suppl. 1, pp17–25, 1968.

    Google Scholar 

  45. Angelopulos, A, Perris, A., Sakellarious, K., Sakelliou, L., Sarigiannis, K., and Zarris, G., Accurate Monte Carlo calculations of the combined attenuation and buildup factors, for energies (20–1500 keV) at distances (0–10 cm) relevant in brachytherapy, Phys. Med. Biol., Vol. 36, pp763–778, 1991.

    Article  Google Scholar 

  46. Chen, Z., and Nath, R., Dose rate constant and energy spectrum of interstitial brachytherapy sources, Med. Phys., Vol. 28, pp96–86, 2001.

    CAS  Google Scholar 

Additional Reading

  1. Attix, F H: Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, New York, USA, 1986.

    Book  Google Scholar 

  2. Kase, K. R. and Nelson, W.R., (Eds.) Dosimetry of Ionizing Radiation, Academic Press, New York, 1990.

    Google Scholar 

  3. Kase, K. R., Attix, F.H and Bjarngard, B. E., (Eds.), Dosimetry of Ionizing Radiation, Vol. I, Academic Press, New York, USA, 1985.

    Google Scholar 

  4. Kase, K. R., Attix, F.H and Bjarngard, B. E., (Eds.), Dosimetry of Ionizing Radiation, Vol. II, Academic Press, Orlando, Florida, USA, 1987.

    Google Scholar 

  5. ICRU, Radiation Quantities and Units, ICRU Report 33, International Commission on Radiation Units and Measurements, Washington, D.C., 1980.

    Google Scholar 

  6. ICRU, Fundamental Quantities and Units for Ionizing Radiation, ICRU Report 60, International Commission on Radiation Units and Measurements, Bethesda, Maryland, USA, 1998.

    Google Scholar 

  7. Domen, S R: Advances in Calorimetry for Radiation Dosimetry. In Kase, K.R., Bjärngard, B.E., and Attix, F.H., The Dosimetry of Ionising Radiation. Vol. II, Academic Press, Orlando, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jayaraman, S., Lanzl, L.H. (2004). Quantification of Radiation Field: Radiation Units and Measurements. In: Clinical Radiotherapy Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18549-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18549-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62155-0

  • Online ISBN: 978-3-642-18549-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics