Skip to main content

Can Planck See Transplanck?

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 92))

Abstract

In this talk I review a recently proposed modulation of the power spectrum of primordial density fluctuations generated through transplankian (maybe stringy) effects during inflation. I briefly discuss the mechanism leading to the modulation, apply it to a generic slow-roll scenario of inflation and argue that the effects obtained are rather generic signatures of transplanckian physics. I also investigate how these primordial modulation effects may leave an imprint in the cosmic microwave background radiation, possibly detectable by satellite experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Brandenberger, “Inflationary cosmology: Progress and problems,” arXiv:hepph/9910410

    Google Scholar 

  2. J. Martin and R. H. Brandenberger, “The trans-Planckian problem of inflationary cosmology,” Phys. Rev. D 63, 123501 (2001) [arXiv:hep-th/0005209]

    Article  ADS  Google Scholar 

  3. J. C. Niemeyer, “Inflation with a high frequency cutoff,” Phys. Rev. D 63, 123502 (2001) [arXiv:astro-ph/0005533]

    Article  ADS  Google Scholar 

  4. R. H. Brandenberger and J. Martin, “The robustness of inflation to changes in super-Planck-scale physics,” Mod. Phys. Lett. A 16, 999 (2001) [arXiv:astroph/0005432]

    Article  ADS  MATH  Google Scholar 

  5. A. Kempf, “Mode generating mechanism in inflation with cutoff,” Phys. Rev. D 63, 083514 (2001) [arXiv:astro-ph/0009209]

    Article  MathSciNet  ADS  Google Scholar 

  6. C. S. Chu, B. R. Greene and G. Shiu, “Remarks on inflation and noncommutative geometry,” Mod. Phys. Lett. A 16, 2231 (2001) [arXiv:hep-th/0011241]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. Martin and R. H. Brandenberger, “A cosmological window on trans-Planckian physics,” arXiv:astro-ph/0012031

    Google Scholar 

  8. L. Mersini, M. Bastero-Gil and P. Kanti, “Relic dark energy from trans-Planckian regime,” Phys. Rev. D 64, 043508 (2001) [arXiv:hep-ph/0101210].

    Article  ADS  Google Scholar 

  9. J. C. Niemeyer and R. Parentani, “Trans-Planckian dispersion and scale-invariance of inflationary perturbations,” Phys. Rev. D 64, 101301 (2001) [arXiv:astroph/0101451]

    Article  ADS  Google Scholar 

  10. A. Kempf and J. C. Niemeyer, “Perturbation spectrum in inflation with cutoff,” Phys. Rev. D 64, 103501 (2001) [arXiv:astro-ph/0103225]

    Article  ADS  Google Scholar 

  11. A. A. Starobinsky, “Robustness of the inflationary perturbation spectrum to trans-Planckian physics,” Pisma Zh. Eksp. Teor. Fiz. 73, 415 (2001) [JETP Lett. 73, 371 (2001)] [arXiv:astro-ph/0104043]

    Google Scholar 

  12. R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “Inflation as a probe of short distance physics,” Phys. Rev. D 64, 103502 (2001) [arXiv:hep-th/0104102]

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Bastero-Gil and L. Mersini, “SN1A data and CMB of Modified Curvature at Short and Large Distances,” Phys. Rev. D 65 (2002) 023502 [arXiv:astroph/0107256]

    Article  ADS  Google Scholar 

  14. L. Hui and W. H. Kinney, “Short distance physics and the consistency relation for scalar and tensor fluctuations in the inflationary universe,” arXiv:astro-ph/0109107

    Google Scholar 

  15. R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “Imprints of short distance physics on inflationary cosmology,” arXiv:hep-th/0110226

    Google Scholar 

  16. M. Bastero-Gil, P. H. Frampton and L. Mersini, “Modified dispersion relations from closed strings in toroidal cosmology,” arXiv:hep-th/0110167

    Google Scholar 

  17. R. H. Brandenberger, S. E. Joras and J. Martin, “Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe,” arXiv:hep-th/0112122

    Google Scholar 

  18. J. Martin and R. H. Brandenberger, “The Corley-Jacobson dispersion relation and trans-Planckian inflation,” arXiv:hep-th/0201189

    Google Scholar 

  19. J. C. Niemeyer, “Cosmological consequences of short distance physics,” arXiv:astro-ph/0201511

    Google Scholar 

  20. F. Lizzi, G. Mangano, G. Miele and M. Peloso, “Cosmological perturbations and short distance physics from noncommutative geometry,” arXiv:hep-th/0203099

    Google Scholar 

  21. G. Shiu and I. Wasserman, “On the signature of short distance scale in the cosmic microwave background,” arXiv:hep-th/0203113

    Google Scholar 

  22. R. Brandenberger and P. M. Ho, “Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations,” arXiv:hep-th/0203119

    Google Scholar 

  23. S. Shankaranarayanan, “Is there an imprint of Planck scale physics on inflationary cosmology?,” arXiv:gr-qc/0203060

    Google Scholar 

  24. N. Kaloper, M. Kleban, A. E. Lawrence and S. Shenker, “Signatures of short distance physics in the cosmic microwave background,” arXiv:hep-th/0201158

    Google Scholar 

  25. R. H. Brandenberger and J. Martin, “On signatures of short distance physics in the cosmic microwave background,” arXiv:hep-th/0202142

    Google Scholar 

  26. S. F. Hassan and M. S. Sloth, “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle,” arXiv:hep-th/0204110

    Google Scholar 

  27. U. H. Danielsson, “A note on inflation and transplanckian physics,” Phys. Rev. D 66, 023511 (2002) [arXiv:hep-th/0203198]

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “A generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation,” arXiv:hepth/0204129

    Google Scholar 

  29. U.H. Danielsson, “Inflation, holography and the choice of vacuum in de Sitter space,” JHEP 0207, 040 (2002) [arXiv:hep-th/0205227]

    Article  MathSciNet  ADS  Google Scholar 

  30. J. C. Niemeyer, R. Parentani and D. Campo, “Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff,” arXiv:hepth/0206149

    Google Scholar 

  31. K. Goldstein and D. A. Lowe, “Initial state effects on the cosmic microwave background and trans-planckian physics,” arXiv:hep-th/0208167

    Google Scholar 

  32. U H. Danielsson, “On the consistency of de Sitter vacua,” hep-th/0210058

    Google Scholar 

  33. R. H. Brandenberger, “Trans-Planckian physics and inflationary cosmology,” arXiv:hep-th/0210186

    Google Scholar 

  34. W. H. Kinney, “Cosmology, inflation, and the physics of nothing,” arXiv:astroph/0301448

    Google Scholar 

  35. K. Goldstein and D. A. Lowe, “A note on alpha-vacua and interacting field theory in de Sitter space,” Nucl. Phys. B 669 (2003) 325 [arXiv:hep-th/0302050]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. G. L. Alberghi, R. Casadio and A. Tronconi, “Trans-Planckian footprints in inflationary cosmology,” arXiv:gr-qc/0303035

    Google Scholar 

  37. C. Armendariz-Picon and E. A. Lim, “Vacuum choices and the predictions of inflation,” arXiv:hep-th/0303103

    Google Scholar 

  38. D. J. Chung, A. Notari and A. Riotto, “Minimal theoretical uncertainties in inflationary predictions,” arXiv:hep-ph/0305074

    Google Scholar 

  39. J. Martin and R. Brandenberger, “On the dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics,” arXiv:hep-th/0305161

    Google Scholar 

  40. The NASA MAP mission, homepage http://map.gsfc.nasa.gov/

    Google Scholar 

  41. The ESA Planck mission, homepage http://astro.estec.esa.nl/SA-general/Projects/Planck/

    Google Scholar 

  42. L. Bergström and U. H. Danielsson, “Can MAP and Planck map Planck physics?,” JHEP 0212 (2002) 038 [arXiv:hep-th/0211006]

    Article  ADS  Google Scholar 

  43. D. Polarski and A. A. Starobinsky, “Semiclassicality and decoherence of cosmological perturbations,” Class. Quant. Grav. 13, 377 (1996) [arXiv:gr-qc/9504030]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. V. Bozza, M. Giovannini and G. Veneziano, JCAP 0305 (2003) 001 [arXiv:hepth/0302184]

    Article  MathSciNet  ADS  Google Scholar 

  45. N. Kaloper, M. Kleban, A. Lawrence, S. Shenker and L. Susskind, “Initial conditions for inflation,” arXiv:hep-th/0209231

    Google Scholar 

  46. N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar field in de Sitter space-time,” Ann. Inst. Henri Poincaré, vol. IX, nr 2, (1968) 109.

    MathSciNet  Google Scholar 

  47. E. Mottola, “Particle Creation In De Sitter Space,” Phys. Rev. D 31 (1985) 754

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Allen, “Vacuum States In De Sitter Space,” Phys. Rev. D 32 (1985) 3136

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Floreanini, C. T. Hill and R. Jackiw, “Functional Representation For The Isometries Of De Sitter Space,” Annals Phys. 175 (1987) 345

    Article  MathSciNet  ADS  Google Scholar 

  50. R. Bousso, A. Maloney and A. Strominger, “Conformai vacua and entropy in de Sitter space,” arXiv:hep-th/0112218

    Google Scholar 

  51. M. Spradlin and A. Volovich, “Vacuum states and the S-matrix in dS/CFT,” arXiv:hep-th/0112223

    Google Scholar 

  52. T. Banks and L. Mannelli, “De Sitter vacua, renormalization and locality,” arXiv:hep-th/0209113

    Google Scholar 

  53. M. B. Einhorn and F. Larsen, “Interacting Quantum Field Theory in de Sitter Vacua,” arXiv:hep-th/0209159

    Google Scholar 

  54. M. B. Einhorn and F. Larsen, “Squeezed states in the de Sitter vacuum,” Phys. Rev. D 68 (2003) 064002 [arXiv:hep-th/0305056]

    Article  MathSciNet  ADS  Google Scholar 

  55. A. A. Starobinsky and I. I. Tkachev, “Trans-Planckian particle creation in cosmology and ultra-high energy cosmic rays,” arXiv:astro-ph/0207572

    Google Scholar 

  56. A. R. Liddle and D. H. Lyth, “Cosmological inflation and large-scale structure”, Cambridge University Press 2000

    Google Scholar 

  57. P. Horava and E. Witten, “Heterotic and type I string dynamics from eleven dimensions,” Nucl. Phys. B 460 (1996) 506 [arXiv:hep-th/9510209]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. P. Horava and E. Witten, “Eleven-Dimensional Supergravity on a Manifold with Boundary,” Nucl. Phys. B 475 (1996) 94 [arXiv:hep-th/9603142]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. J. Polchinski, “String Theory. Vol. 2: Superstring Theory And Beyond,” Cambridge, UK: Univ. Pr. (1998) 531

    Google Scholar 

  60. P. Mukherjee and Y. Wang, “Wavelet Band Powers of the Primordial Power Spectrum from CMB Data,” Astrophys. J. 593 (2003) 38 [arXiv:astro-ph/0301058]

    Article  ADS  Google Scholar 

  61. J. R. Bond, G. Efstathiou and M. Tegmark, “Forecasting Cosmic Parameter Errors from Microwave Background Anisotropy Experiments,” Mon. Not. Roy. Astron. Soc. 291, L33–L41 (1997) [arXiv:astro-ph/9702100]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danielsson, U.H. (2004). Can Planck See Transplanck?. In: Klapdor-Kleingrothaus, H.V. (eds) Beyond the Desert 2003. Springer Proceedings in Physics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18534-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18534-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62148-2

  • Online ISBN: 978-3-642-18534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics