Skip to main content

Contributions to Fundamental Physics and Constants Using Penning Traps

  • Conference paper
Beyond the Desert 2003

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 92))

  • 234 Accesses

Abstract

In Penning traps charged particles are subject to a strong axial magnetic field and a weak electrostatic quadrupole field, which makes the particles moving with three independent frequencies. The quadrupole field can be generated either by using hyperboloidal or a set of cylindrical electrodes. A cyclotron frequency measurement gives access to an accurate value of the ion mass. This can be performed either by the determination of images currents in a ring electrode or by using a time-of-flight method after excitation of the ion motion. In 1970 Hans Dehmelt et al. measured the g-factors of a free electron and positron as well as their masses using a Penning trap. This lead to a shared Nobel Prize in Physics in 1989. These measurements were the overture to a large number of fundamental experiments. The experimental g-factor was compared to the value predicted by QED, which indirectly gives the fine structure constant α at an uncertainty of 4 ppb. The obvious question is to what extent the g-factor is changed when the electron is bound in a hydrogen-like ion. To obtain an answer a dedicated set of traps was constructed by the GSI-Mainz collaboration. Recently, a different way of calculating α was proposed. It is based on laser photon recoil experiments and may result in an even a more accurate value of α that is independent of QED. This a method requires very accurate mass values of the electron, the proton and 133 C s . Precise mass and g-factor measurements offer CPT-tests. Accurate mass values of 3 H and 3 He, i.e. the Q-value of the 3 H decay, may enter in future experiments on the beta spectrum of 3 H searching for a finite rest mass of the electron antineutrino. The mass difference between 76 Ge and 76 Se is indispensable in the analysis of the data searching for the standard model violating neutrinoless double beta decay of 76 Ge. Accurate masses of 28 Si and 197 Au are needed in efforts for a new definition of the kilogram based on atomic quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Dehmelt, Les Prix Nobel, (The Swedish Academy of Sciences 1989)

    Google Scholar 

  2. J. Tan and G. Gabrielse, Appl. Phys. Lett. 55, 2144 (1989)

    Article  ADS  Google Scholar 

  3. L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  4. G. Bollen et al., Nucl. Instrum. Methods B 70, 490 (1992)

    Article  ADS  Google Scholar 

  5. I. Bergström et al., Nucl. Instrum. Methods 487, 618 (2002)

    Article  ADS  Google Scholar 

  6. G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  7. T. Fritioff et al., Eur. J. Phys. A 15, 249, (2002)

    Article  ADS  Google Scholar 

  8. F. Di Filippo et al., Phys. Rev. Lett. 73, 1481 (1994)

    Article  ADS  Google Scholar 

  9. M. P. Bradley et al., Phys. Rev. Lett. 83, 4510 (1999)

    Article  ADS  Google Scholar 

  10. R. S. van Dyck Jr., D. L. Farnham, and P. B. Schwinberg, Phys. Scripta T59, 131 (1995)

    Article  Google Scholar 

  11. G. Gräf f, H. Kalinowski. and J. Trout, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  12. R. L. Kelly, J. Phys. Chem. Ref. Data 16, Supplement No. 1 (1986)

    Google Scholar 

  13. G. C. Rodrigues et al., Phys. Rev. A 63, 012510 (2001)

    Article  ADS  Google Scholar 

  14. R. S. Van Dyck. Jr., S. L. Zafonte, and P. B. Schwinberg, Hyp. Int. 132, 163 (2001)

    Article  ADS  Google Scholar 

  15. R. S. Van Dyck. Jr., private communication

    Google Scholar 

  16. N. Hermansphan et al., Phys. Rev. Lett. 84, 427 (2000)

    Article  ADS  Google Scholar 

  17. T. Beier et al., Phys. Rev. A 62, 032510 (2000)

    Article  ADS  Google Scholar 

  18. T. Beier et al., Phys. Rev. Lett. 88, 011603 (2002)

    Article  ADS  Google Scholar 

  19. W. Quint, GSI, private communication

    Google Scholar 

  20. I. Bergström et al., Eur. Phys. J. B 22, 41 (2002)

    Google Scholar 

  21. T. Kinoshita, Rep. Prog. Phys. 59, 1459 (1996)

    Article  ADS  Google Scholar 

  22. B. Taylor, NIST, private communication

    Google Scholar 

  23. D. S. Weiss, B. C. Yang, and S. Chu, Phys. Rev. Lett. 70, 2706 (1993)

    Article  ADS  Google Scholar 

  24. Th. Udem et al., Phys. Rev. Lett. 82, 3568 (1999)

    Article  ADS  Google Scholar 

  25. C. Carlberg, T. Fritioff, and L Bergström, Phys. Rev. Lett. 83, 4506 (1999)

    Article  ADS  Google Scholar 

  26. R. S. Van Dyck Jr. et al., ‘High precision Penning trap mass spectrometry and a new measurement of the proton’s “atomic mass”’ In: Proceedings of Trapped Charged Particles and Fundamental Physics, Asilomar, California August-September 1998, ed. by D. H. E. Dubin, Dieter Schneider (Woodbury, New York) p. 101

    Google Scholar 

  27. S. Chu, Stanford University, private communication

    Google Scholar 

  28. R. S. Van Dyck Jr. and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  29. R. S. Schwinberg, R. S. Van Dyck Jr., and H. G. Dehmelt, Phys. Rev. Lett. A 81, 119 (1981)

    ADS  Google Scholar 

  30. G. Gabrielse et al., Proposal to PSCC, CERN (1985)

    Google Scholar 

  31. A. Bamberger et al., Phys. Lett. B 33, 233 (1970)

    ADS  Google Scholar 

  32. C. Carlberg, Hyp. Int. 114, 177 (1998)

    Article  ADS  Google Scholar 

  33. I. Bergström et al., Phys. Scripta 66, 201 (2002)

    Article  ADS  Google Scholar 

  34. R. S. van Dyck Jr., D. L. Farham, and P. B. Schwinberg, Phys. Scripta 46, 257 (1992)

    Article  ADS  Google Scholar 

  35. A. Picard et al., Nucl. Instrum. Methods B 63, 345 (1992)

    Article  ADS  Google Scholar 

  36. T. Fritioff et al., Eur. Phys. J. D 15, 141 (2001)

    Article  ADS  Google Scholar 

  37. R. S. Van Dyck Jr., private communication

    Google Scholar 

  38. T. Fritioff and G. Douysset, Phys. Scripta 67, 276 (2003)

    Article  ADS  Google Scholar 

  39. G. Audi and A. H. Wapstra, Nucl. Phys. A 565, 1 (1993)

    Article  ADS  Google Scholar 

  40. K. S. Kozier et al., Can. J. Phys. 58, 1311 (1980)

    Article  ADS  Google Scholar 

  41. V. M. Lobashev et al., Phys. Rev. Lett. B 350, 263 (1995)

    ADS  Google Scholar 

  42. G. Drexlin,’ A sub-eV Neutrino Mass Experiment, Motivation and Overview’, Contribution to the International Workshop on Neutrino Masses, Bad Liebenzell, Germany, Jan. 18-21, 2001

    Google Scholar 

  43. R. J. Ellis et al., Nucl. Phys. A 435, 34 (1985)

    Article  ADS  Google Scholar 

  44. J. G. Hykaway, Phys. Rev. Lett. 67, 1708 (1991)

    Article  ADS  Google Scholar 

  45. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001)

    Article  ADS  Google Scholar 

  46. P. Seyfried, Z. Phys. B 87, 289 (1992)

    Article  ADS  Google Scholar 

  47. R. Jertz et al. Phys. Scrypta 48, 399 (1993)

    Article  ADS  Google Scholar 

  48. M. Gläser, Rev. Sci. Instrum. 62, 2493 (1991)

    Article  ADS  Google Scholar 

  49. A. Paul et al., Hyp. Int. 132, 189 (2001)

    Article  ADS  Google Scholar 

  50. G. Bollen et al., Nucl. Instrum. Methods A 368, 675 (1996)

    Article  ADS  Google Scholar 

  51. K. Blaum et al., Nucl. Instrum. Methods B 204, 478 (2003)

    Article  ADS  Google Scholar 

  52. G. Douysset, T. Fritioff, C. Carlberg, I. Bergström and M. Björkhage, Phys. Rev. Lett 86, 4259 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergström, I., Nagy, S., Schuch, R., Blaum, K., Fritioff, T. (2004). Contributions to Fundamental Physics and Constants Using Penning Traps. In: Klapdor-Kleingrothaus, H.V. (eds) Beyond the Desert 2003. Springer Proceedings in Physics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18534-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18534-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62148-2

  • Online ISBN: 978-3-642-18534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics