Skip to main content

Towards a Background-Free ββ-Decay Experiment Using the EDELWEISS Cryogenic Ge Detectors

  • Conference paper
Beyond the Desert 2003

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 92))

  • 232 Accesses

Abstract

The present generation of double-beta experiments is limited by two main backgrounds: surface alpha interactions and Compton interactions from high-energy gamma-ray lines. Using the detector developments realized for the EDELWEISS Dark Matter experiment, we propose a strategy to eliminate completely the alpha radioactivity background and to reduce by nearly two orders of magnitude the Compton background. This would lead to a nearly background-free experiment, and an effective neutrino mass sensitivity of 15 meV achieved in three years with a one-ton array of ionisation-heat 76Ge detectors. In a first stage, the existence of the double-beta 0 -υ Heidelberg candidate could be tested in a few years in the EDELWEISS-II cryostat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Spergel, et al., astro-ph/0302209/, to appear in Ap. J.

    Google Scholar 

  2. S. R. Elliott and P. Vogel, Ann. Rev. Part. Sci. 52, 115 (2002).

    Article  ADS  Google Scholar 

  3. C.E. Aalseth, et al., Phys. Rev. D 65, 092007 (2002); hep-ex/0202026.

    Article  ADS  Google Scholar 

  4. L. Baudis, et al., Phys. Rev. Lett. 83, 41 (1999); hep-ex/9902014.

    Google Scholar 

  5. H.V. Klapdor-Kleingrothaus, et al., Nucl. Instrum. Meth. A 481, 149 (2002); hepex/0012022.

    Article  ADS  Google Scholar 

  6. D. Dassie, et al., NEMO Collaboration, in Proceedings of the 16th International Conference on Neutrino Physics and Astrophysics, Eilat, Israel, 29 May — 3 Jun 1994.

    Google Scholar 

  7. C. Arnaboldi, et al., CUORE Collaboration, hep-ex/0302021, submitted to Astropart. Phys.

    Google Scholar 

  8. H.V. Klapdor-Kleingrothaus, Nucl. Phys. B 110, 364 (2002); hep-ph/ 0206249.

    Google Scholar 

  9. L. Baudis, et al., Phys.Rev. D 63, 022001 (2001).

    ADS  Google Scholar 

  10. L. De Braeckeleer, for the MAJORANA Collaboration, in Proceedings of the Carolina Symposium on Neutrino Physics, South Carolina, 10-12 Mar 2000, pp. 325-339.

    Google Scholar 

  11. C. Arnaboldi, et al., CUORE Collaboration, submitted to NIM; hep-ex/0212053.

    Google Scholar 

  12. A. Benoit, et al., Phys.Lett. B 479, 8 (2000); astro-ph/0002462/.

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Arnaboldi, et al., Phys.Lett. B557, 167 (2003); hep-ex/0211071.

    ADS  Google Scholar 

  14. A. Broniatowski, et al., in Low Temperature Detectors, eds. F.S. Porter et al., AIP Conference Proceedings 605, 521 (2001).

    Google Scholar 

  15. A. Broniatowski, et al., in Proceedings of the 10th International Workshop on Low temperature Detectors, Genoa, 7-11 July 2003, to appear in Nucl. Instr. Meth. A.

    Google Scholar 

  16. D. Breton, et al., in Proceedings of the 6th Workshop on Electronics for LHC experiments, Cracow, Poland, 11-15 Sept. 2002, pp. 203–207.

    Google Scholar 

  17. T. Lucas and Y. Jin, J.Phys. IV (France) 12, Pr3–121 (2002).

    Google Scholar 

  18. T. Lucas and Y. Jin, ibid. Pr3-113.

    Google Scholar 

  19. M. Ammann, P.N. Luke, Nucl. Instrum. Meth. A 452, 155 (2000).

    Article  ADS  Google Scholar 

  20. C. E. Lehner, Z. He, G. F. Knoll, IEEE Trans. Nucl. Sc. 50, 1090 (2003).

    Article  ADS  Google Scholar 

  21. D. Protic and T Krings, IEEE Trans. Nucl. Sc. 50, 998 (2003).

    Article  ADS  Google Scholar 

  22. A. Alessandrello, et al, Phys. Atom. Nucl. 66, 452 (2003).

    Article  ADS  Google Scholar 

  23. A. Benoit, et al., Phys. Lett. B 545, 43 (2002).

    Article  ADS  Google Scholar 

  24. H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, and I.V. Krivosheina, Mod. Phys. Lett. 16, 2409 (2001).

    Article  ADS  Google Scholar 

  25. C.E. Aalseth, et al., Mod.Phys.Lett. A17, 1475 (2002); hep-ex/0202018.

    ADS  Google Scholar 

  26. H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Found.Phys. 32, 1181 (2002); Erratum-ibid. 33 (2003) 679.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chardin, G., Broniatowski, A., Censier, B., Deschamps, H., Fesquet, M., Jin, Y. (2004). Towards a Background-Free ββ-Decay Experiment Using the EDELWEISS Cryogenic Ge Detectors. In: Klapdor-Kleingrothaus, H.V. (eds) Beyond the Desert 2003. Springer Proceedings in Physics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18534-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18534-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62148-2

  • Online ISBN: 978-3-642-18534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics