Skip to main content

Laser Spectroscopy

  • Chapter

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

The wide applicability of lasers in spectroscopy is due to several factors. As we have seen, very high intensities can be obtained in a small frequency interval. The favourable spatial properties of laser beams with the possibility of very good focusing is also of great importance. With the advent of tunable lasers, completely new types of experiments have become possible and investigations that were only barely possible with conventional light sources can now be readily performed. It is fair to state that tunable lasers have revolutionized optical spectroscopy. Several monographs and review articles on laser spectroscopy have been published [9.19.22]. A wealth of material is presented in the proceedings of International Laser Spectroscopy Conferences [9.239.36].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Demtröd er: Laser Spectroscopy, 3rd edn. (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  2. A. Corney: Atomic and Laser Spectroscopy (Clarendon, Oxford 1977)

    Google Scholar 

  3. L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds.): Laser Spectroscopy and its Applications (Dekker, New York 1987)

    Google Scholar 

  4. V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sciences, Vol. 4 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  5. M.D. Levenson, S. Kano: Introduction to Nonlinear Spectroscopy, revised edn. (Academic Press, New York 1988)

    Google Scholar 

  6. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  7. M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Theoretical Concepts (Wiley, New York 1986)

    Google Scholar 

  8. S. Stenholm: Foundations of Laser Spectroscopy (Wiley, New York 1984)

    Google Scholar 

  9. A.L. Schawlow: Spectroscopy in a new light. Rev. Mod. Phys. 54, 697 (1982)

    Article  ADS  Google Scholar 

  10. N. Bloembergen: Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685 (1982)

    Article  ADS  Google Scholar 

  11. G.W. Series: Laser spectroscopy. Contemp. Phys. 25, 3 (1984)

    Google Scholar 

  12. B. Couillaud, A. Ducasse: New methods in high-resolution laser spectroscopy, in Progress in Atomic Spectroscopy, Pt. C, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1984) p. 57

    Google Scholar 

  13. R.C. Thompson: High-resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531 (1985)

    Article  ADS  Google Scholar 

  14. H. Walther (ed.): Laser Spectroscopy of Atoms and Molecules, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  15. K. Shimoda (ed.): High-Resolution Laser Spectroscopy, Topics Appl. Phys., Vol. 13 (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  16. Y. Prior, A. Ben-Reuven, M. Rosenbluh: Methods of Laser Spectroscopy (Plenum, New York 1986)

    Google Scholar 

  17. R.A. Smith (ed.): Very High Resolution Spectroscopy (Academic Press, London 1976)

    Google Scholar 

  18. A. Mooradian, T. Jaeger, P. Stokseth (eds.): Tunable Lasers and Applications, Springer Ser. Opt. Sci., Vol.3 (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  19. M.D. Levenson, W.H. Yen (eds.): Lasers, Spectroscopy and New Ideas. A Tribute to A.L. Schawlow, Springer Ser. Opt. Sci., Vol. 54 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  20. M.H. Mittelman: Introduction to the Theory of Laser-Atom Interactions (Plenum, New York 1993)

    Google Scholar 

  21. B.W. Shore: The Theory of Coherent Atomic Excitation. Vol. 1: Simple Atoms and Fields, Vol. 2: Multilevel Atoms and Incoherence (Wiley, New York, 1990)

    Google Scholar 

  22. D.L. Andrews, A.A. Demitov: Introduction to Laser Spectroscopy (Plenum, New York 1995)

    Google Scholar 

  23. A.P. Roy (ed.): Spectroscopy — Perspectives and Frontiers (Narosa, New Delhi 1997)

    Google Scholar 

  24. S. Mukamel: Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford 1998)

    Google Scholar 

  25. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions — Basic Processes and Applications (Wiley, New York 1998)

    Google Scholar 

  26. R. Gupta: Resource letter LS-1: Laser Spectroscopy. Am. J. Phys. 59, 874 (1991)

    Article  ADS  Google Scholar 

  27. T.W. Hänsch, H. Walther: Laser spectroscopy and quantum optics. Rev. Mod. Phys. 71, S242 (1999)

    Article  Google Scholar 

  28. R.G. Brewer, A. Mooradian (eds.): Laser Spectroscopy, Proc. 1st Int. Conf., Vail 1973 (Academic Press, New York 1974)

    Google Scholar 

  29. S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris (eds.): Laser Spectroscopy, Proc. 2nd. Int. Conf., Megeve 1975, Lecture Notes Phys., Vol. 43 (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  30. J.L. Hall, J.L. Carlsten (eds.): Laser Spectroscopy III, Proc. 3rd. Int. Conf., Jackson Lake 1977, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  31. H. Walther, K,W. Rothe (eds.): Laser Spectroscopy IV, Proc. 4th Int. Conf., Rottach-Egern 1979, Springer Ser. Opt. Sci., Vol. 21 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  32. A.R.W. McKellar, T. Oka, B.P. Stoicheff (eds.): Laser Spectroscopy V, Proc. 5th Int. Conf., Jasper 1981, Springer Ser. Opt. Sci., Vol. 30 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  33. H.P. Weber, W. Lüthy (eds.).: Laser Spectroscopy VI, Proc. 6th Int. Conf., Interlaken 1983, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  34. T.W. Hänsch, Y.R. Shen (eds.): Laser Spectroscopy VII, Proc. 7th Int. Conf., Maui 1985, Springer Ser. Opt. Sci., Vol.49 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  35. W. Persson, S. Svanberg (eds.): Laser Spectroscopy VIII, Proc. 8th Int. Conf., Åre 1987, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  36. M.S. Feld, J.E. Thomas, A. Mooradian (eds.): Laser Spectroscopy IX (Academic Press, Boston 1989)

    Google Scholar 

  37. M. Ducloy, E. Giacobino, G. Camy (eds.): Laser Spectroscopy X (World Scientific, Singapore 1992)

    Google Scholar 

  38. L. Bloomfield, Th. Gallagher, D. Larson (eds.): Laser Spectroscopy XI (AIP, New York 1994)

    Google Scholar 

  39. M. Inguscio, M. Allegrini, A. Sasso (eds.): Laser Spectroscopy XII (World Scientific, Singapore 1996)

    Google Scholar 

  40. Z.-J. Wang, Y.-Z. Wang, Z.-M. Zhang (eds.): Laser Spectroscopy XIII (World Scientific, Singapore 1998)

    Google Scholar 

  41. R. Blatt, J. Eschner, D. Leibfried, F. Schmidt-Kaler (eds.): Laser Spectroscopy XIV (World Scientific, Singapore 1999)

    Google Scholar 

  42. S. Chu, V. Vutelic, A.J. Kerman, C. Chin (eds.): Laser Spectroscopy 15 (World Scientific, Singapore 2002)

    Google Scholar 

  43. P. Hannaford, A. Siderov, H. Bachor, K. Baldwin (eds.): Laser Spectroscopy 16 (World Scientific, Singapore 2004)

    Google Scholar 

  44. C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)

    Article  ADS  Google Scholar 

  45. D. Kleppner: ‘The spectroscopy of highly excited atoms.’ In: Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) Pt. B, p. 713

    Google Scholar 

  46. D. Kleppner, M.G. Littman, M.L. Zimmerman: Highly excited atoms. Sci. Am. 244, 130 (1981)

    Google Scholar 

  47. R.F. Stebbings, F.B. Dunning (eds.): Rydberg States of Atoms and Molecules (Cambridge University Press, Cambridge 1983)

    Google Scholar 

  48. T.F. Gallagher: Rydberg atoms. Rep. Prog. Phys. 51, 143 (1988)

    Article  ADS  Google Scholar 

  49. T.F. Gallagher: Resonant collisional energy transfer between Rydberg atoms. Phys. Rep. 210, 319 (1992)

    Article  ADS  Google Scholar 

  50. T.F. Gallagher: Rydberg Atoms (Cambridge University Press, Cambridge 1994)

    Google Scholar 

  51. J.-P. Connerade: Highly Excited Atoms (Cambridge University Press, Cambridge 1997)

    Google Scholar 

  52. R.R. Jones, L.D. Noordam: ‘Electronic wavepackets.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 1

    Google Scholar 

  53. G.M. Lankhuijzen, L.D. Noordam: ‘Rydberg ionization: From field to photon.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 121

    Google Scholar 

  54. W.C. Wiley, I.H. McLaren: Rev. Sci. Instrum. 26, 313 (1955)

    Article  Google Scholar 

  55. P. Kruit, F.H. Read: J. Phys. E. 16, 313 (1983)

    Article  ADS  Google Scholar 

  56. D.J. Trevor, L.D. van Woerkom, R.R. Freeman: Rev. Sci. Instrum. 60, 1051 (1989)

    Article  ADS  Google Scholar 

  57. J. Spickermann, K. Martin, H.J. Räder, K. Müllen, R.-P. Krüger, H. Schlaad, A.H.E. Müller: Quantitative analysis of broad molecular weight distributions obtained by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Eur. Mass Spectrom. 2, 161 (1996)

    Article  Google Scholar 

  58. K.C. Harvey, B.P. Stoicheff: Fine structure of the n 2 D series in rubidium near the ionization limit. Phys. Rev. Lett. 38, 537 (1977)

    Article  ADS  Google Scholar 

  59. K. Niemax: Spectroscopy using thermionic diode detectors, Appl. Phys. B 38, 147 (1985)

    Article  ADS  Google Scholar 

  60. T.W. Ducas, M.G. Littman, R.R. Freeman, D. Kleppner: Stark ionization of high-lying states of sodium. Phys. Rev. Lett. 35, 366 (1975)

    Article  ADS  Google Scholar 

  61. T.F. Gallagher, L.M. Humphrey, R.M. Hill, S.A. Edelstein: Resolution of [m l] and [m j] levels in the electric field ionization of highly excited d-states of Na. Phys. Rev. Lett. 37, 1465 (1976)

    Article  ADS  Google Scholar 

  62. T.F. Gallagher, L.M. Humphrey, R.M. Hill, W. Cooke, S.A. Edelstein: Fine structure intervals and polarizabilities of highly excited p and d states of sodium. Phys. Rev. A 15, 1937 (1977)

    Article  ADS  Google Scholar 

  63. F.V. Kowalski, R.T. Hawkins, A.L. Schawlow: Digital wavemeter for cw lasers. J. Opt. Soc. Am. 66, 965 (1976)

    Article  ADS  Google Scholar 

  64. J.L. Hall, S.A. Lee: Interferometric real time display of cw dye laser wavelengths with sub-Doppler accuracy. Appl. Phys. Lett. 29, 367 (1976)

    Article  ADS  Google Scholar 

  65. A. Fischer, K. Kullmer, W. Demtröder: Computer-controlled Fabry-Pérot wavemeter. Opt. Commun. 39, 277 (1981)

    Article  ADS  Google Scholar 

  66. L.S. Lee, A.L. Schawlow: Multi-wedge wavemeter for pulsed lasers. Opt. Lett. 6, 610 (1981)

    Article  ADS  Google Scholar 

  67. P. Juncar, J. Pinard: A new method for frequency calibration and laser control. Opt. Commun 14, 438 (1975)

    Article  ADS  Google Scholar 

  68. T.W. Hän sch, J.J. Snyder: Wavemeters, Dye Lasers, 3rd edn., ed. by F.P. Schäfer, Topics Appl. Phys., Vol. 1 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  69. R. Castell, W. Demtröder, A. Fischer, R. Kullmer, H. Weickenmeier, K. Wikkert: The accuracy of laser wavelength meters. Appl Phys. B 38, 1 (1985)

    Article  ADS  Google Scholar 

  70. M. Herscher: The spherical mirror Fabry-Pérot interferometer. Appl. Opt. 7, 951 (1968)

    Article  ADS  Google Scholar 

  71. J.U. White: Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285 (1942)

    Article  ADS  Google Scholar 

  72. J.U. White: Very long paths in air. J. Opt. Soc. Am. 66, 411 (1976)

    Article  ADS  Google Scholar 

  73. G. Yale Eastman: The heat pipe. Sci. Am. 218, 38 (1968)

    Article  Google Scholar 

  74. C.R. Vidal, J. Cooper: Heat pipe oven. A new well-defined metal vapor device for spectroscopic measurements. J. Appl. Phys. 40, 3370 (1969)

    Article  ADS  Google Scholar 

  75. H.-L. Chen: Applications of laser absorption spectroscopy. In: [9.3] p. 261

    Google Scholar 

  76. T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a cw dye laser to selective extinction. IEEE J. Quantum Electron. QE-8, 802 (1972)

    Article  ADS  Google Scholar 

  77. T.H. Harris: Laser intracavity-enhanced spectroscopy. In: [9.97] p. 343

    Google Scholar 

  78. V.M. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Suchkov: JETP 74, 21 (1978)

    ADS  Google Scholar 

  79. V.M. Baev, J. Eschner, E. Paeth, R. Schüler, P.E. Toschek: Intra-cavity spectroscopy with diode lasers. Appl. Phys. B 55, 463 (1992)

    Article  ADS  Google Scholar 

  80. W. Gurlit, J.P. Burrows, H. Burkhard, R. Böhm, V.M. Baev, P.E. Toschek: Intracavity diode laser for atmospheric field measurements. Infrared Phys. Technol. 37, 95 (1996)

    Article  ADS  Google Scholar 

  81. A. O’Keefe, D.A.G. Deacon: Cavity ring-down spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  82. R.T. Jongma, M.G.H. Boogaarts, I. Holleman, G. Meijer: Trace gas detection with cavity ring down spectroscopy. Rev. Sci. Instrum. 66, 2821 (1995)

    Article  ADS  Google Scholar 

  83. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing and M.N.R. Ashfold: Cavity ring-down spectroscopy. J. Chem. Soc. Faraday Trans. 94, 337 (1998)

    Article  Google Scholar 

  84. J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe: Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS). Chem. Phys. Lett. 245, 273 (1995)

    Article  ADS  Google Scholar 

  85. D.J. Bradley, P. Ewart, J.V. Nicholas, J.R.D. Shaw: Excited state absorption spectroscopy of alkaline earths selectively pumped by tunable dye lasers. I. Barium arc spectra. J. Phys. B 6, 1594 (1973)

    Google Scholar 

  86. J.R. Rubbmark, S.A. Borgström, K. Bockasten: Absorption spectroscopy of laser-excited barium. J. Phys. B 10, 421 (1977)

    Article  ADS  Google Scholar 

  87. M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identification of absorption lines by modulated lower-level population: Spectrum of Na. Phys. Rev. Lett. 36, 671 (1976)

    Article  ADS  Google Scholar 

  88. A.L. Schawlow: Simplifying spectra by laser level labeling. Phys. Scr. 25, 333 (1982)

    Article  ADS  Google Scholar 

  89. R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of spectra by polarization labeling. Phys. Rev. Lett. 37, 683 (1976)

    Article  ADS  Google Scholar 

  90. P. Esherick: Bound, even-parity J = 0 and J = 2 states of Sr. Phys. Rev. A 15, 1920 (1977)

    Article  ADS  Google Scholar 

  91. J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)

    Article  ADS  Google Scholar 

  92. C.J. Sansonetti, K.-H. Weber: Reference lines for dye-laser wavenumber calibration in the optogalvanic spectra of uranium and thorium. J. Opt. Soc. Am. 131, 361 (1984)

    Google Scholar 

  93. O. Axner, I. Lindgren, I. Magnusson, H. Rubinsztein-Dunlop: Trace element determination in flames by laser-enhanced ionization spectrometry. Anal. Chem. 57, 773 (1985)

    Article  Google Scholar 

  94. O. Axner, H. Rubinsztein-Dunlop: Detection of trace amounts of Cr by two laser-based spectroscopic techniques: Laser-enhanced ionization in flames and laser-induced fluorescence in graphite furnace. Appl. Opt. 32, 867 (1993)

    Article  ADS  Google Scholar 

  95. J. Travis and G. Turk (eds.): Laser-Enhanced Ionization Spectrometry (Wiley, New York 1996)

    Google Scholar 

  96. P. Ljung, E. Nyström, J. Enger, P. Ljungberg, O. Axner: Detection of titanium in electro-thermal atomizers by laser-induced fluorescence. Spectrochim. Acta B 52, 675 (1997); B 52, 703 (1997

    Google Scholar 

  97. P. Ljung, O. Axner: Measurements of rubidium in standard reference samples by wavelength-modulation diode laser absorption spectrometry in a graphite furnace. Spectrochim. Acta B 52, 305 (1997)

    Article  ADS  Google Scholar 

  98. X. Hou, S.-J.J. Tsai, J.X. Zhou, K.X. Yang, R.F. Leonardo, R.G. Michel: ‘Laser-excited atomic fluorescence spectrometry: Principle, instrumentation and applications.’ In: Lasers in Analytical Spectroscopy, ed. by J. Sneddon, T.L. Thiem, Y.-I. Lee (VCH Publishers, New York 1997)

    Google Scholar 

  99. A. Zybin, C. Schnürer-Patschan, M.A. Bolshov, K. Niemax: Elemental analysis by diode laser spectroscopy. Trends Anal. Chem. 17, 513 (1998)

    Article  Google Scholar 

  100. T. Imasaka: Analytical molecular spectroscopy with diode lasers. Spectrochim. Acta Rev. 15, 329 (1993)

    Google Scholar 

  101. A.W. Mantz: A review of spectroscopic applications of tunable semiconductor lasers. Spectrochim. Acta A 51, 221 (1995)

    Google Scholar 

  102. A.W. Mantz: A review of the applicability of tunable diode-laser spectroscopy at high sensitivity. Microchem. J. 50, 351 (1994)

    Article  Google Scholar 

  103. M. Inguscio, F.S. Cataliotti, C. Fort, F.S. Pavone, M. Prevedelli: ‘A new generation of light sources for applications in spectrocopy.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer, Heidelberg, Berlin 1997)

    Google Scholar 

  104. C.E. Wieman, L. Hollberg: Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1 (1991)

    Article  ADS  Google Scholar 

  105. F.S. Pavone: Diode lasers and their applications in spectroscopy. Rivista del Nuovo Cimento 19, 1 (1996)

    Article  MathSciNet  Google Scholar 

  106. J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionization techniques. In: [9.30] p. 337

    Google Scholar 

  107. J.A. Paisner, R.W. Solarz: Resonance photoionization spectroscopy. In: [9.3] p. 175

    Google Scholar 

  108. P. Camus (ed.): Optogalvanic Spectroscopy and its Applications. J. Physique Coll. C7, Suppl. no. 11, Tome 44 (1983)

    Google Scholar 

  109. P. Hannaford: Spectroscopy with sputtered atoms. Contemp. Phys. 24, 251 (1983)

    Article  ADS  Google Scholar 

  110. K.C. Smith, P.K. Schenck: Optogalvanic spectroscopy of a neon discharge. Chem. Phys. Lett. 55, 466 (1978)

    Article  ADS  Google Scholar 

  111. V.S. Letokhov: Laser Photoionization Spectroscopy (Academic Press, Orlando 1987)

    Google Scholar 

  112. J.C. Travis, G.C. Turk, J.R. DeVoe, P.K. Schenck, C.A. van Dijk: Prog. Anal. Atom. Spectrosc. 7, 199 (1984)

    Google Scholar 

  113. I. Magnusson, O. Axner, I. Lindgren, H. Rubinsztein-Dunlop: Laserenhanced ionization detection of trace elements in a graphite furnace. Appl. Spectrosc. 40, 968 (1986)

    Article  ADS  Google Scholar 

  114. O. Axner, I. Magnusson, J. Petersson, S. Sjöström: Investigation of the multi-element capability of laser-enhanced ionization spectrometry in flames for analysis of trace elements in water solution. Appl. Spectrosc. 41, 19 (1987)

    Article  ADS  Google Scholar 

  115. N. Omenetto: ‘The impact of several atomic and molecular laser spectroscopic techniques for chemical analysis.’ In: Laser Technology in Chemistry, Special issue, ed. by H. Medin, S. Svanberg, Appl. Phys. B 46, No. 3 (1988)

    Google Scholar 

  116. G.S. Hurst, M.G. Payne (eds.): Resonance Ionization Spectroscopy and its Applications 1984, Conf. Series No. 71 (Institute of Physics, Bristol 1984)

    Google Scholar 

  117. G.S. Hurst, C. Grey Morgan (eds.): Resonance Ionization Spectroscopy, Conf. Series No. 84 (Institute of Physics, Bristol 1987)

    Google Scholar 

  118. G.S. Hurst, M.G. Payne (eds.): Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, Bristol 1988)

    Google Scholar 

  119. H.-J. Kluge, B.A. Bushaw, G. Passler, K. Wendt, N. Trautmann: Resonance ionization spectroscopy for trace analysis and fundamental research. Fresenius Z. Anal. Chem. 350, 78 (1994)

    Google Scholar 

  120. C.H. Chen, G.S. Hurst, M.G. Payne: ‘Resonance ionization spectroscopy: Inert gas detection.’ In: Progress in Atomic Spectroscopy, Pt.C, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1984) p. 115

    Google Scholar 

  121. G.S. Hurst, M.G. Payne, S.D. Kramer, C.H. Chen, R.C. Phillips, S.L. Allman, G.D. Alton, J.W.T. Dabbs, Rd. Willis, B.E. Lehman: Method for counting noble gas atoms with isotopic selectivity. Rep. Prog. Phys. 48, 1333 (1985)

    Article  ADS  Google Scholar 

  122. V.S. Letokhov: Detecting individual atoms and molecules with lasers. Sci. Am. 259(3), 44 (1988)

    Article  Google Scholar 

  123. J.T. Höffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid, H. Walther: ‘Resonance fluorescence of a single ion.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  124. J.A. Gelbwachs (ed.): Laser Spectroscopy for Detection. Proc. SPIE Int. Soc. Opt. Eng. Vol. 286 (SPIE, Washington 1981)

    Google Scholar 

  125. R.A. Keller: Laser-Based Ultrasensitive Spectroscopy and Detection. Proc. SPIE Int. Soc. Opt. Eng. Vol. 426 (SPIE, Washington 1983)

    Google Scholar 

  126. J.J. Snyder, R.A. Keller (eds.): Ultrasensitive Laser Spectroscopy, Special issue, J. Opt. Soc. Am. B 2, No 9 (1985)

    Google Scholar 

  127. D. Kliger (ed.): Ultrasensitive Laser Spectroscopy (Academic Press, New York 1983)

    Google Scholar 

  128. M. Eigen, R. Rigler: Proc. Natl. Acad. Sci. USA 91, 5740 (1994)

    Article  ADS  Google Scholar 

  129. W.E. Moerner, R.M. Dickson, D.J. Norris: ‘Single-molecule spectroscopy and quantum optics in solids.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 193

    Google Scholar 

  130. M. Orrit, J. Bernard, R. Brown, B. Lounis: ‘Optical spectroscopy of single molecules in solids.’ In: Progress in Optics XXXV, ed. by E. Wolf (Elsevier, Amsterdam 1996), p. 63

    Google Scholar 

  131. Th. Basche, W.E. Moerner, M. Orritt, U.P. Wild (eds.): Single Molecule Optical Detection, Imaging and Spectroscopy (Wiley-VCH, Munich 1997)

    Google Scholar 

  132. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  133. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M.S. Feld: Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy. Current Science 77, 915 (1999)

    Google Scholar 

  134. S. Weiss: Fluorescence spectroscopy of single biomolecules. Science 283, 1676 (1999) (Special Issue, March 12, 1999)

    Article  ADS  Google Scholar 

  135. X. Sunney Xie, J.K. Trautman: Single-molecule optical studies at room temperature. Ann. Rev. Phys. Chem. 49, 441 (1998)

    Article  ADS  Google Scholar 

  136. N. Omenetto (ed.): Analytical Laser Spectroscopy (Wiley, New York 1979)

    Google Scholar 

  137. E.H. Piepmeier (ed.): Analytical Applications of Lasers (Wiley, New York 1986)

    Google Scholar 

  138. V.S. Letokhov (ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1986)

    Google Scholar 

  139. J. Sneddon, T.L. Thiem, Y.-I. Lee (eds.): Lasers in Analytical Spectroscopy (VCH Publishers, New York 1997)

    Google Scholar 

  140. N. Omenetto: The role of lasers in analytical atomic spectroscopy — Where, when and why. J. Anal. At. Spectrom. 13, 385 (1998)

    Article  Google Scholar 

  141. S. Svanberg: ‘Fundamentals of atmospheric spectroscopy.’ In: Surveillance of Electromagnetic Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)

    Google Scholar 

  142. L.B. Kreutzer: Laser optoacoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)

    Google Scholar 

  143. A. Rosencwaig: Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)

    Google Scholar 

  144. V. Letokhov, V. Zhaorov: Laser Opto-Acoustic Spectroscopy, Springer Ser. Opt. Sci., Vol.37 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  145. A.C. Tam: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  146. P. Hess, J. Pelzl (eds.): Photoacoustics and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  147. P. Hess (ed.): Photoacoustics (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  148. M.W. Sigrist: ‘Air monitoring by laser photoacoustic spectroscopy.’ In: Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York 1994)

    Google Scholar 

  149. F.G.C. Bijnen, H. Zuckermann, F.J.M. Harren, J. Reuss: Multi-component trace gas analysis by three photoacoustic cells intracavity in a CO-laser; observation of anaerobic and post-anaerobic emission of acetaldehyde and ethanol in cherry tomatoes. Appl. Opt. 37, 3345 (1998)

    Article  ADS  Google Scholar 

  150. F.J.M. Harren: ‘Photoacoustic spectroscopy in trace gas monitoring.’ In: Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, ed. by R.A. Meyers (Wiley, New York 2000) p. 2203

    Google Scholar 

  151. C.K.N. Patel, A.C. Tam: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517 (1981)

    Google Scholar 

  152. S. Svanberg, P. Tsekeris, W. Happer: Hyperfine structure studies of highly excited D and F levels in alkali atoms using a CW dye laser. Phys. Rev. Lett. 30, 817 (1973)

    Article  ADS  Google Scholar 

  153. S. Svanberg, P. Tsekeris: Hyperfine-structure investigation of highly excited 2 D levels in 87Rb and 133Cs using a cw tunable laser in a two-step excitation scheme. Phys. Rev. A 11, 1125 (1975)

    Article  ADS  Google Scholar 

  154. G. Belin, I. Lindgren, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)

    Article  ADS  Google Scholar 

  155. G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in rubidium. Phys. Scr. 13, 351 (1976)

    Article  ADS  Google Scholar 

  156. G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in cesium. Phys. Scr. 14, 39 (1976)

    Google Scholar 

  157. S. Svanberg: Measurement and calculation of excited alkali hyperfine and Stark parameters. In: [9.25] p. 183

    Google Scholar 

  158. R. Neumann, F. Träger, G. zu Putlitz: ‘Laser-microwave spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 1

    Google Scholar 

  159. T.F. Gallagher: ‘Radiofrequency spectroscopy of Rydberg atoms.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 12

    Google Scholar 

  160. K. Fredriksson, S. Svanberg: Precision determination of the fine structure of the 4d state in sodium using level crossing spectroscopy. Phys. Lett. A 53, 61 (1975)

    Article  ADS  Google Scholar 

  161. E. Matthias, R.A. Rosenberg, E.D. Poliakoff, M.G. White, S.-T. Lee, D.A. Shirley: Time-resolved VUV spectroscopy using synchrotron radiation: Fluorescent lifetimes of atomic Kr and Xe. Chem. Phys. Lett. 52, 239 (1977)

    Article  ADS  Google Scholar 

  162. T. Möller, G. Zimmerer: Time-resolved spectroscopy with synchrotron radiation in the vacuum ultraviolet. Phys. Scr. T17, 177 (1987)

    Article  ADS  Google Scholar 

  163. R. Rigler, O. Kristensen, R. Roslund, P. Thyberg, K. Oba, M. Eriksson: Molecular structure and dynamics: Beamline for time-resolved spectroscopy at the MAX synchrotron in Lund. Phys. Scr. T17, 204 (1987)

    Article  ADS  Google Scholar 

  164. U. Berzinsh, Luo Caiyan, R. Zerne, S. Svanberg: Determination of radiative lifetimes of neutral sulphur by time-resolved VUV laser spectroscopy. Phys. Rev. A 55, 1836 (1997)

    Article  ADS  Google Scholar 

  165. Se. Johansson, A. Joueizadeh, U. Litzén, J. Larsson, A. Persson, C.-G. Wahlström, S. Svanberg, D.S. Leckrone, G.M. Wahlgren: Comparison of new experimental and astrophysical f-values for some Ru II lines, observed in HST spectra of XLupi. Astrophys. J. 421, 809 (1994)

    Article  ADS  Google Scholar 

  166. H. Bergström, G.W. Faris, H. Hallstadius, H. Lundberg, A. Persson, C.-G. Wahlström: Radiative lifetime and hyperfine-structure studies on laser-evaporated boron. Z. Phys. D 8, 17 (1988)

    Article  ADS  Google Scholar 

  167. R.A. Lacy, A.C. Nilsson, R.L. Byer, W.T. Silvfast, O.R. Wood II, S. Svanberg: ‘Photoionization-pumped gain at 185 nm in a laser-ablated Indium plasma.’ In: Short Wavelength Coherent Radiation: Generation and Applications, AIP Conference Proceedings No. 147, ed. by D.T. Attwood, J. Bokor (AIP, New York 1986); and J. Opt. Soc. Am. B 6, 1209 (1989

    Google Scholar 

  168. Z.-S. Li, J. Norin, A. Persson, C.-G. Wahlström, S. Svanberg, P.S. Doidge, E. Biémont: Radiative properties of neutral germanium obtained from excited state lifetime and branching ratio measurements and comparison with theoretical calculations. Phys. Rev. A 60, 198 (1999)

    Article  ADS  Google Scholar 

  169. M.B. Gaarde, R. Zerne, C. Luo, Z. Jiang, J. Larsson, S. Svanberg: Determination of radiative lifetimes of excited states in neutral gold using time-resolved VUV laser spectroscopy. Phys. Rev. A 50, 209 (1994)

    Article  ADS  Google Scholar 

  170. R. Zerne, J. Larsson, S. Svanberg: Determination of radiative lifetimes in the 3d 10 np 2 P sequence of neutral copper by time-resolved VUV laser spectroscopy. Phys. Rev. A 49, 128 (1994)

    Article  ADS  Google Scholar 

  171. C. Luo, U. Berzinsh, R. Zerne, S. Svanberg: Determination of radiative lifetimes on neutral bismuth by time-resolved UV/VUV laser spectroscopy. Phys. Rev. A 52, 1936 (1995)

    Article  ADS  Google Scholar 

  172. U. Berzinsh, S. Svanberg: Atomic radiative lifetimes measured by pulsed laser spectroscopy in the UV/VUV spectral region. Adv. Quantum Chem. 30, 283 (1998)

    Article  ADS  Google Scholar 

  173. Z.S. Li, S. Svanberg, P. Quinet, X. Tordoir, E. Biemont: Lifetime measurements in Yb II with time-resolved laser spectroscopy. J. Phys. B 32, 1731 (1999)

    Article  ADS  Google Scholar 

  174. Zhang Zhiguo, Z.S. Li, H. Lundberg, K.Y. Zhang, Z.W. Dai, Jiang Zhankui, S. Svanberg: Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements. J. Phys. B 33, 521 (2000)

    Article  ADS  Google Scholar 

  175. P. Quinet, P. Palmeri, E. Biemont, Z.S. Li, Z.G. Zhang, S. Svanberg: Radiative lifetime measurements and transition probability calculations in lanthanide ions. J. of Alloys and Compounds 344, 255 (2002)

    Article  Google Scholar 

  176. J.C. Cooper, N.D. Gibson, J.E. Lawler: Radiative lifetimes in Cr I by laserinduced fluorescence. J. Quant. Spectrosc. Radiat. Transfer 58, 85 (1997)

    Article  ADS  Google Scholar 

  177. G.M. Wahlgren, S.G. Johansson, U. Litzén, N.D. Gibson, J.C. Cooper, J.E. Lawler, D.S. Leckrone, R. Engleman Jr.: Atomic data for the Re II resonance multiplet and its application to astrophysics. Astrophys. J. 475, 380 (1997)

    Article  ADS  Google Scholar 

  178. P.B. Coates: The correction for photon “pile-up” in the measurement of radiative lifetimes. J. Phys. E 1, 878 (1968)

    Article  ADS  Google Scholar 

  179. M. Gustavsson, H. Lundberg, L. Nilsson, S. Svanberg: Lifetime measurements for excited states of rare-earth atoms using pulse-modulation of a cw dye laser beam. J. Opt. Soc. Am. 69, 984 (1979)

    Article  ADS  Google Scholar 

  180. J. Carlsson: Accurate time-resolved laser spectroscopy on sodium and bismuth atoms. Z. Phys. D 9, 147 (1988)

    Google Scholar 

  181. K. Bhatia, P. Grafström, C. Levinson, H. Lundberg, L. Nilsson, S. Svanberg: Natural radiative lifetimes in the perturbed 6snd 1 D 2 sequence of barium. Z. Physik A 303, 1 (1981)

    Google Scholar 

  182. T.F. Gallagher, W. Sandner, K.A. Safinya: Probing configuration interaction of the Ba 5d7d 1 D 2 state using radiofrequency spectroscopy and lifetime measurements. Phys. Rev. A 23, 2969 (1981)

    Article  ADS  Google Scholar 

  183. M. Aymar, R.-J. Champeau, C. Delsart, J.C. Keller: Lifetimes of Rydberg levels in the perturbed 6snd 1,3 D 2 series of barium I. J. Phys. B 14, 4489 (1981)

    Article  ADS  Google Scholar 

  184. S. Svanberg: Perturbations in Rydberg sequences probed by lifetime, Zeeman-effect and hyperfine structure measurements. In: [9.27] p. 301

    Google Scholar 

  185. J. Carlsson, L. Sturesson: Accurate time-resolved laser spectroscopy on lithium atoms. Z. Phys. D 14, 281 (1989)

    Article  ADS  Google Scholar 

  186. J. Carlsson: Accurate time-resolved laser spectroscopy on sodium and bismuth atoms. Z. Phys. D 9, 147 (1988)

    Article  ADS  Google Scholar 

  187. J. Carlsson, P. Jönsson, L. Sturesson, C. Froese Fischer: Multi-configuration Hartree-Fock calculations and time-resolved laser spectroscopy studies of hyperfine structure constants in sodium. Phys. Scr. 46, 394 (1992)

    Article  ADS  Google Scholar 

  188. C. De Michelis, M. Mattioli: Spectroscopy and impurity behaviour in fusion plasmas. Rep. Prog. Phys. 47, 1233 (1984)

    Article  ADS  Google Scholar 

  189. R.C. Isler: Impurities in Tokomaks. Nuclear Fusion 24, 1599 (1984)

    Article  Google Scholar 

  190. R.E. Imhof, F.H. Read: Measurements of lifetimes of atoms, molecules and ions. Rep. Prog. Phys. 40, 1 (1977)

    Article  ADS  Google Scholar 

  191. P. Erman: ‘Time-resolved spectroscopy of small molecules.’ In: Specialists Periodical Reports, Molecular Spectroscopy, Vol. 6, Chap. 5 (The Chemical Society, London 1979) p. 174

    Google Scholar 

  192. J.N. Dodd, G.W. Series: ‘Time-resolved fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) p. 639

    Google Scholar 

  193. W.L. Wiese: ‘Atomic transition probabilities and lifetimes.’ In: Progress in Atomic Spectroscopy, Pt. B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 1101

    Google Scholar 

  194. M.C.E. Huber, R.J. Sandeman: The measurement of oscillator strengths. Rep. Prog. Phys. 49, 397 (1986)

    Article  ADS  Google Scholar 

  195. O. Poulsen, J.L. Hall: Spectroscopic investigation in 209Bi I using tunablecw-dye-laser spectroscopy. Phys. Rev. A 18, 1089 (1978)

    Article  ADS  Google Scholar 

  196. S. Svanberg: Natural radiative lifetimes of some excited Bi I levels belonging to the 6p 2 7s and the 6p 2 6d configurations measured by the Hanle method. Phys. Scr. 5, 73 (1972)

    Article  ADS  Google Scholar 

  197. H.J. Andrä, A. Gaupp, W. Wittmann: New method for precision lifetime measurements by laser excitation of fast-moving atoms. Phys. Rev. Lett. 31, 501 (1973)

    Article  ADS  Google Scholar 

  198. A. Gaupp, P. Kuske, H.J. Andrä: Accurate lifetime measurements of the lowest 2P1/2 states in neutral lithium and sodium. Phys. Rev. A 26, 3351 (1982)

    Article  ADS  Google Scholar 

  199. C.E. Tanner, A.E. Livingston, R.C. Rafac, F.G. Serpa, K.W. Kukla, H.G. Berry, L. Young, C.A. Kurtz: Phys. Rev. Lett. 69, 2765 (1992)

    Article  ADS  Google Scholar 

  200. T. Brage, C. Froese Fischer, P. Jönsson: Effects of core-valence and corecore correlation on the line strength of the resonance lines in Li I and Na I. Phys. Rev. A 49, 2181 (1994)

    Article  ADS  Google Scholar 

  201. C.E. Tanner: ‘Precision measurements of atomic lifetimes.’ In: Atomic Physics XIV, ed. by D.J. Wineland, C.E. Wieman, S.J. Smith (AIP Publ., New York 1995) p. 150

    Google Scholar 

  202. P. Erman, J. Brzozowski, B. Sigfridsson: Gas excitations using highfrequency deflected electron beams: A convenient method for determinations of atomic and molecular lifetimes. Nucl. Instrum. Methods 110, 471 (1973)

    Article  ADS  Google Scholar 

  203. P. Erman: High-resolution measurements of atomic and molecular lifetimes using the high-frequency deflection technique. Phys. Scr. 11, 65 (1975)

    Article  ADS  Google Scholar 

  204. P. Erman: Astrophysical applications of time-resolved molecular spectroscopy. Phys. Scr. 20, 575 (1979); Studies of perturbations using time resolved techniques. Phys. Scr. 25, 365 (1982

    Article  ADS  Google Scholar 

  205. J. Brzozowski, P. Bunker, N. Elander, P. Erman: Predissociation effects in the A, B, and C states of CN and the interstellar formation rate of CH via inverse predissociation. Astrophys. J. 207, 414 (1976)

    Article  ADS  Google Scholar 

  206. J.K. Link: Measurement of the radiative lifetimes of the first excited states of Na, K, Rb, and Cs by means of the phase-shift method. J. Opt. Soc. Am. 56, 1195 (1966)

    Article  ADS  Google Scholar 

  207. P.T. Cunningham, J.K. Link: Measurement of lifetimes of excited states of Na, T1, In, Ga, Cu, Ag, Pb, and Bi by the phase-shift method. J. Opt. Soc. Am. 57, 1000 (1967)

    Article  ADS  Google Scholar 

  208. L. Armstrong Jr., S. Ferneuille: Theoretical analysis of the phase shift measurement of lifetimes using monochromatic light. J. Phys. B 8, 546 (1975)

    Article  ADS  Google Scholar 

  209. C.H. Corliss, W.R. Bozman: Experimental transition probabilities for spectral lines of seventy elements. NBS Monograph 53 (National Bureau of Standards, Washington, DC 1962)

    Google Scholar 

  210. W. Marlow: Hakenmethode. Appl. Opt. 6, 1715 (1967)

    Article  ADS  Google Scholar 

  211. N.P. Penkin: ‘Experimental determination of electronic transition probabilities and the lifetimes of the excited atomic and ionic states.’ In: Atomic Physics 6, ed. by R. Damburg (Plenum, New York 1979) p. 33

    Google Scholar 

  212. W.A. van Wijngaarden, K.D. Bonin, W. Happer: Inverse hook method for measuring oscillator strengths for transitions between excited atomic states. Hyperfine Interact. 38, 471 (1987)

    Article  ADS  Google Scholar 

  213. S. Svanberg: Atomic spectroscopy by resonance scattering. Philos. Trans. R. Soc. London A 293, 215 (1979)

    Article  ADS  Google Scholar 

  214. J.N. Dodd, G.W. Series: ‘Time-resolved fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) p. 639

    Google Scholar 

  215. S. Haroche: Quantum beats and time-resolved fluorescence spectroscopy. In: [9.15] p. 253

    Google Scholar 

  216. P. Grundevik, H. Lundberg, A.-M. Mårtensson, K. Nystrom, S. Svanberg: Hyperfine-structure study in the P sequence of 23Na using quantum-beat spectroscopy. J. Phys. B 12, 2645 (1979)

    Article  ADS  Google Scholar 

  217. G. Jönsson, C. Levinson, L Lindgren, A. Persson, C.G. Wahlström: Experimental and theoretical studies of the 4s 2 np 2 P sequence in neutral gallium. Z. Phys. A 322, 351 (1985)

    Article  ADS  Google Scholar 

  218. J. Bengtsson, J. Larsson, S. Svanberg, C.-G. Wahlström: Hyperfine-structure study of the 3d 105p 2 P 3/2 level of neutral copper using pulsed levelcrossing spectroscopy at short wavelengths. Phys. Rev. A 41, 233 (1990)

    Article  ADS  Google Scholar 

  219. J. Bengtsson, J. Larsson, S. Svanberg, C.G. Wahlström: High-resolution pulsed laser spectroscopy in the UV/VUV spectral region. In: [9.31] p. 86

    Google Scholar 

  220. S. Svanberg: ‘High-resolution laser spectroscopy in the UV/VUV spectral region.’ In: Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1990)

    Google Scholar 

  221. G.J. Bengtsson, P. Jönsson, J. Larsson, S. Svanberg: Time-resolved spectroscopic studies of the 7p 2 P states of neutral silver following VUV excitation, Z. Physik D 22, 437 (1991)

    Article  ADS  Google Scholar 

  222. J. Larsson, S. Svanberg: High-resolution VUV spectroscopy using pulsed laser sources. Appl. Phys. B 59, 433 (1994)

    Article  ADS  Google Scholar 

  223. D.P. O’Brien, P. Meystre, H. Walther: ‘Subnatural linewidths in atomic spectroscopy.’ In: Advanced Atomic and Molecular Physics, Vol. 21, ed. by D.R. Bates, B. Bederson (Academic Press, Orlando 1985)

    Google Scholar 

  224. H. Figger, H. Walther: Optical resolution beyond the natural linewidth: A level-crossing experiment on the 3 2 P 3/2 level of sodium using a tunable dye laser. Z. Phys. 267, 1 (1974)

    Article  ADS  Google Scholar 

  225. P. Schenk, R.C. Hilborn, H. Metcalf: Time-resolved fluorescence from Ba and Ca excited by a pulsed tunable dye laser. Phys. Rev. Lett. 31, 189 (1974)

    Google Scholar 

  226. J. Bengtsson, J. Larsson, S. Svanberg: Hyperfine structure and radiative lifetime determination for the 4d 10 6s 2 P states of neutral silver using pulsed laser spectroscopy. Phys. Rev. A 42, 545 (1990)

    Article  ADS  Google Scholar 

  227. F. Shimizu, K. Shimuiu, Y. Gomi, H. Takuma: Direct observation of hyperfine splittings of the 7Li 2 P 3/2 state by subnatural linewidth spectroscopy. Phys. Rev. A 35, 3149 (1987)

    Article  ADS  Google Scholar 

  228. J. Larsson, L. Sturesson, S. Svanberg: Manipulation of level-crossing signals using narrow-band or pulsed laser excitation. Phys. Scr. 40, 165 (1989)

    Article  ADS  Google Scholar 

  229. S.L. Shapiro (ed.): Ultrashort Light Pulses, 2nd edn. Topics Appl. Phys., Vol. 18 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  230. W. Kaiser (ed.): Ultrashort Laser Pulses and Applications, 2nd edn. Springer Ser. Opt. Sci., Vol.60 (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  231. C.V. Shank, E. Ippen, S.L. Shapiro: Picosecond Phenomena, Springer Ser. Chem. Phys., Vol.4 (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  232. R.M. Hochstrasser, W. Kaiser, C.V. Shank: Picosecond Phenomena II, Springer Ser. Chem. Phys., Vol. 14 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  233. K. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Lauberau (eds.): Picosecond Phenomena III, Springer Ser. Chem. Phys., Vol. 23 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  234. D. Auston, K. Eisenthal (eds.): Ultrafast Phenomena IV, Springer Ser. Chem. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  235. A. Siegman, G. Fleming (eds.): Ultrafast Phenomena V, Springer Ser. Chem. Phys., Vol. 46 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  236. P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VI (Springer Berlin, Heidelberg 1988)

    Google Scholar 

  237. P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VII (Springer Berlin, Heidelberg 1990)

    Google Scholar 

  238. P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VIII (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  239. P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena IX, Springer Ser. Chem. Phys., Vol.60 (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  240. P.F. Barbara, J.G. Fujimoto, W.H. Knox, W. Zinth (eds.): Ultrafast Phenomena X, Springer Ser. Chem. Phys., Vol.62 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  241. T. Elsaesser, J.G. Fujimoto, D.A. Wiersmaa, W. Zinth (eds.): Ultrafast Phenomena XI (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  242. T. Elsaesser, S. Mukamel, M.M. Murnane, N.F. Scherer (eds.): Ultrafast Phenomena XII (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  243. D.R. Miller, M.M. Murnane, A.M. Weiner (eds.): Ultrafast Phenomena XIII (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  244. J.C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena (Academic Press, New York 1996)

    Google Scholar 

  245. T. Baumert, G. Gerber: Femtosecond spectroscopy of molecules and clusters. Adv. At. Mol. Opt. Phys. 35, 163 (1995)

    Article  ADS  Google Scholar 

  246. Th. Elsaesser, M. Woerner: Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures. Phys. Rep. 321, 253 (1999)

    Article  ADS  Google Scholar 

  247. O. Svelto, S. De Silvresti, G. Denardo (eds.): Ultrafast Processes in Spectroscopy (Plenum, New York 1996)

    Google Scholar 

  248. E. Schreiber: Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  249. R. Schinke: Photodissociation Dynamics (Cambridge University Press, Cambridge 1993)

    Google Scholar 

  250. G.D. Billings, K.V. Mikkelsen: Introduction to Molecular Dynamics and Chemical Kinetics (Wiley, London 1996)

    Google Scholar 

  251. J.W. Hepburn, R.E. Continetti, M.A. Johnson (eds.): Laser Techniques for State-Selective and State-to-State Chemistry IV, Proc. SPIE Int. Soc. Opt. Eng. 3271 (1997)

    Google Scholar 

  252. J. Hoff, J. Deisenhofer: Photophysics of photosynthesis. Phys. Rep. 287, 1 (1997)

    Google Scholar 

  253. S. Letzring: Buying and using a streak camera. Lasers & Appl. (March 1983) p. 49

    Google Scholar 

  254. R. Trebino, D.J. Kane: Using phase retrieval to measure the intensity and phase of ultra-short pulses: Frequency-resolved optical gating. J. Opt. Soc. Am. A 10, 1101 (1993)

    Article  ADS  Google Scholar 

  255. D.J. Kane, R. Trebino: Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. QE-29, 571 (1993)

    Article  ADS  Google Scholar 

  256. R. Trebino, K.W. DeLong, D.N. Fittinghoff, D.N. Sweetser, M.A. Krumbugel, B.A. Richman, D.J. Kane: Measuring ultra-short laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277 (1997)

    Article  ADS  Google Scholar 

  257. A. Baltuska, M. Pshenichnikov, D.A. Wiersma: Amplitude and phase characterization of 4.5 fs pulses by frequency-resolved optical gating. Opt. Lett. 23, 1474 (1998)

    Google Scholar 

  258. S. Linden, H. Giessen, J. Kuhl: XFROG, A new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Status Solidi 206, 119 (1998)

    Article  Google Scholar 

  259. C. Iaconis, I.A. Walmsley: Spectral phase interferometry for direct electricfield reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792 (1998)

    Article  ADS  Google Scholar 

  260. R.R. Alfano (ed.): The Supercontinuum Laser Source (Springer-Verlag, New York 1989)

    Google Scholar 

  261. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste: Teramobile: A mobile femtosecond-terawatt laser and detection system. Eur. Phys. J. AP 20, 183 (2002)

    Article  ADS  Google Scholar 

  262. P.R. Smith, D.A. Auston, M.C. Nuss: Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. QE-24, 255 (1988)

    Article  ADS  Google Scholar 

  263. M. van Exter, Ch. Fattiger, D. Grischkowsky: High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 55, 337 (1989)

    Article  ADS  Google Scholar 

  264. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattiger: Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006 (1990)

    Article  ADS  Google Scholar 

  265. M. van Exter, D. Grischkowsky: Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684 (1990)

    Article  ADS  Google Scholar 

  266. L. Xu, X.-C. Zhang, D.H. Auston: Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Appl. Phys. Lett. 61, 1784 (1992)

    Article  ADS  Google Scholar 

  267. R.A. Cheville, D. Grischkowsky: Far-infrared terahertz time-domain spectroscopy of flames. Opt. Lett. 20, 1646 (1995)

    Article  ADS  Google Scholar 

  268. B.B. Hu, M.C. Nuss: Imaging with terahertz waves. Opt. Lett. 20, 1716 (1995)

    Article  ADS  Google Scholar 

  269. D.M. Mittleman, R.H. Jacobsen, M.C. Nuss: T-ray imaging. IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996)

    Article  Google Scholar 

  270. P.Y. Han, G.C. Cho, X.C. Zhang: Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 24, 242 (2000)

    Article  ADS  Google Scholar 

  271. P.H. Siegel: Terahertz technology. IEEE MTT 50, 910 (2002)

    Article  Google Scholar 

  272. R.M. Woodward, W.P. Wallace, R.J. Pye, B.E. Cole, D.D. Arnone, E.H. Linfield, M. Pepper: Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Invest. Derm. 120, 72 (2003)

    Article  Google Scholar 

  273. C. Zandonella: Terahertz imaging: T-ray specs. Nature 424, 721 (2003)

    Article  ADS  Google Scholar 

  274. A.H. Zewail: Laser femtochemistry. Science 242, 1645 (1988)

    Article  ADS  Google Scholar 

  275. A.H. Zewail: The birth of molecules. Sci. Am. 263(6), 40 (1990)

    Article  Google Scholar 

  276. M. Dantus, M.J. Rosker, A.H. Zewail: Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395 (1987)

    Article  ADS  Google Scholar 

  277. M.J. Rosker, M. Dantus, A.H. Zewail: Femtosecond real-time probing of reactions. I. The technique. J. Chem. Phys. 89, 6113 (1988)

    Article  ADS  Google Scholar 

  278. M.J. Rosker, M. Dantus, A.H. Zewail: Femtosecond real-time probing of reactions. II. The dissociation reaction of ICN. J. Chem. Phys. 89, 6128 (1988)

    Article  ADS  Google Scholar 

  279. A.H. Zewail: Femtochemistry. J. Phys. Chem. 97, 12 427 (1993)

    Google Scholar 

  280. S. Pedersen, J.L. Herek, A.H. Zewail: The validity of the “diradical hypothesis”: Direct femtosecond studies of the transition-state structures. Science 266, 1359 (1994)

    Article  ADS  Google Scholar 

  281. A.H. Zewail: J. Phys. Chem. 100, 12 701 (1996)

    Article  Google Scholar 

  282. H. Ihee, V. Lobastov, U. Gomez, B. Goodson, R. Srinivasan, C.-Y. Ruan, A.H. Zewail: Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 385 (2001)

    Article  Google Scholar 

  283. S.K. Pal, J. Peon, A.H. Zewail: Biological water at the protein surface dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. 99, 1763 (2002)

    Article  ADS  Google Scholar 

  284. Proc. Femtosecond Chemistry — The Berlin Conference: J. Phys. Chem. 97, 12 424–12 649 (1993) Special issue

    Google Scholar 

  285. A.H. Zewail (ed.): Femtochemistry: Ultrafast Dynamics of the Chemical Bond, Vols. 1 and 2 (World Scientific, Singapore 1994)

    Google Scholar 

  286. J. Manz, L. Wöste (eds.): Femtosecond Chemistry, Vol.1 and 2 (VCH, Weinheim 1995)

    Google Scholar 

  287. P. Brumer, M. Shapiro: Laser control of chemical reactions. Sci. Am. 272(3), 34 (1995)

    Article  Google Scholar 

  288. M.A. El-Sayed, I. Tanaka, Y. Molin: Ultrafast Processes in Chemistry and Photobiology (Blackwell Science, Oxford 1995)

    Google Scholar 

  289. M. Chergui (ed.): Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems (World Scientific, Singapore 1996)

    Google Scholar 

  290. V. Sundström (ed.): Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution (World Scientific, Singapore 1997)

    Google Scholar 

  291. D.L. Andrews: Lasers in Chemistry, 3rd edn. (Springer Verlag, Heidelberg 1997)

    Google Scholar 

  292. M.J. Rosker, T.S. Rose, A.H. Zewail: Real-time dynamics of photofragment-trapping resonances on dissociative potential energy surfaces. Chem. Phys. Lett. 146, 175 (1988)

    Article  ADS  Google Scholar 

  293. L.R. Khundkar, A.H. Zewail: Picosecond photofragment spectroscopy. IV. Dynamics of consecutive bond breakage in the reaction C2F4I2→ C2F4 + 2I. J. Chem. Phys. 92, 231 (1990)

    Article  ADS  Google Scholar 

  294. S. Pedersen, L. Banares, A.H. Zewail: Femtosecond vibrational transition state dynamics in a chemical reaction. J. Chem. Phys. 97, 8801 (1992)

    Article  ADS  Google Scholar 

  295. M. Shapiro, P. Brumer: Coherent and incoherent laser control of photochemical reactions. Int. Rev. Phys. Chem. 13, 187 (1994)

    Article  Google Scholar 

  296. C.J. Bardeen, V.V. Yakolev, K.R. Wilson, S.D. Carpenter, P.M. Weber, W.S. Warren: Chem. Phys. Lett. 280, 151 (1997)

    Article  ADS  Google Scholar 

  297. T.C. Weinacht, J. Ahn, P.H. Bucksbaum: Controlling the shape of a quantum wavefunction. Nature 397, 233 (1999)

    Article  ADS  Google Scholar 

  298. J. Ahn, T.C. Weinacht, P.H. Bucksbaum: Science 287, 463 (2000)

    Article  ADS  Google Scholar 

  299. S.E. Harris: Electromagnetically induced transparancy. Physics Today 50, No 7, 36 (1997)

    Article  Google Scholar 

  300. O. Kocharovskaya: Amplification and lasing without inversion. Phys. Rep. 219, 175 (1992)

    Article  ADS  Google Scholar 

  301. G. Alzetta, A. Gozzini, L. Moi, G. Orriols: Nuovo Cimento B 36, 5 (1976)

    Article  ADS  Google Scholar 

  302. O.A. Kocharovskaya, Y.I. Khanin: Coherent amplification of ultrashort pulse in the three-level medium without population inversion. JETP Lett. 48, 630 (1988)

    ADS  Google Scholar 

  303. S.E. Harris: Lasers without inversion: Interference of lifetime-broadened resonances, Phys. Rev. Lett. 62, 1033 (1989)

    Article  ADS  Google Scholar 

  304. M.O. Scully, S.-Y. Zhu, A. Gavridiles: Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813 (1989)

    Article  ADS  Google Scholar 

  305. P. Mandel: Lasers without inversion: A useful concept? Contemp. Phys. 34, 235 (1993)

    Article  ADS  Google Scholar 

  306. O. Kocharovskaya: From lasers without inversion to gamma lasers? Laser Physics 5, 284 (1995)

    Google Scholar 

  307. O. Kocharovskaya, R. Kolesov, Yu. Rostovtsev: Lasing without inversion: a new path to gamma-ray laser. Laser Physics 9, 745 (1999)

    Google Scholar 

  308. J. Gao, C. Guo, X. Guo, G. Jin, P. Wang, J. Zhao, H. Zhang, Y. Jiang, D. Wang, D. Jiang: Observation of light amplification without population inversion. Opt. Commun. 93, 323 (1992)

    Article  ADS  Google Scholar 

  309. A. Nottelman, C. Peers, W. Lange: Inversionless amplification of picosecond pulses due to Zeeman coherence. Phys. Rev. Lett. 70, 1783 (1993)

    Article  ADS  Google Scholar 

  310. E.S. Fry, X. Li, D. Nikonov, G.G. Padmabandu, M.O. Scully, A.V. Smith, F.K. Tittel, C. Wang, S.R. Wilkinson, S.-Y. Zhu: Atomic coherence effect within the sodium D line: Lasing without inversion via population trapping. Phys. Rev. Lett. 70, 3235 (1993)

    Article  ADS  Google Scholar 

  311. W.E. van der Veer, R.J.J. van Dienst, A. Dönszelmann, H.B. van Linden van den Heuvell: Experimental demonstration of light amplification without population inversion. Phys. Rev. Lett. 70, 3243 (1993)

    Article  ADS  Google Scholar 

  312. A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L. Velichansky, H.G. Robinson: Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Phys. Rev. Lett. 75, 1499 (1995)

    Article  ADS  Google Scholar 

  313. G.G. Padmabandu et al.: Laser oscillation without population inversion in a sodium atomic beam. Phys. Rev. Lett. 76, 2053 (1996)

    Google Scholar 

  314. J.A. Kleinfeld, A.D. Streater: Gain and coherence effects induced by strong cw-laser coupling in potassium-rare-gas mixtures. Phys. Rev. A 53, 1839 (1996)

    Article  ADS  Google Scholar 

  315. C. Fort, F.S. Cataliotti, T.W. Hänsch, M. Inguscio, M. Prevedelli: Gain without inversion on the cesium D1 line. Opt. Commun. 139, 31 (1997)

    Google Scholar 

  316. A. Kaspari, M. Jain, G.Y. Jin, S.E. Harris: Electromagnetically induced transparancy: Propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  317. O. Schmidt, R. Wynands, Z. Hussein, D. Meschede: Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A 53, R27 (1996)

    Article  ADS  Google Scholar 

  318. L. Vestergaard Hau, S.E. Harris, Z. Dutton, C.H. Behroozi: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  319. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229 (1999)

    Article  ADS  Google Scholar 

  320. D.-F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  321. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  322. S.E. Harris, L. Vestergaard Hau: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999)

    Article  ADS  Google Scholar 

  323. A.S. Zibrov, M.D. Lukin, M.O. Scully: Nondegenerate parametric selfoscillation via multiwave mixing in coherent atomic media. Phys. Rev. Lett. 83, 4049 (1999)

    Article  ADS  Google Scholar 

  324. M.D. Lukin, A. Imamoglu: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419 (2000)

    Article  ADS  Google Scholar 

  325. G. Mainfrey, P. Agostini (eds.): Multiphoton Processes (CEA, Paris 1991)

    Google Scholar 

  326. M. Gavrila (ed.): Atoms in Intense Laser Fields (Academic Press, Boston 1992)

    Google Scholar 

  327. B. Piraux, A. L’Huillier, K. Rzazewski (eds.): Super-Intense Laser-Atom Physics, NATO ASI Ser. Vol. 316 (Plenum, New York 1993)

    Google Scholar 

  328. N.B. Delone, V.P. Krainov: Multiphoton Processes in Atoms, Vol. 13 (Springer Verlag, Heidelberg 1994)

    Google Scholar 

  329. S. Svanberg, J. Larsson, A. Persson, C.-G. Wahlström: Lund high power laser facility — Systems and first results. Phys. Scr. 49, 187 (1994)

    Article  ADS  Google Scholar 

  330. H.G. Muller, M.V. Fedorov (eds.): Super-Intense Laser-Atom Physics IV (Kluwer, Dordrecht 1996)

    Google Scholar 

  331. P. Gibbon, E. Förster: Short-pulse laser-plasma interactions. Plasma Phys. Control. Fusion 38, 769 (1996)

    Article  ADS  Google Scholar 

  332. P. Lambropoulos, H. Walther (eds.): Multiphoton Processes 1996 (IOP Publishing, Bristol 1997)

    Google Scholar 

  333. L.F. DiMauro, R.R. Freeman, K. Kulander: Multiphoton Processes: ICOMP XIII (AIP, Melville, NY 2000)

    Google Scholar 

  334. P. Lambropoulos, H. Walther (eds.): Multiphoton Physics, IOP Conf. Ser., Vol. 154 (IOP Publishing, Bristol 1997)

    Google Scholar 

  335. S. Svanberg, A. L’Huillier, C.-G. Wahlström: Atomic physics using shortwavelength coherent radiation. Nucl. Instrum. Methods A 398, 55 (1997)

    Article  ADS  Google Scholar 

  336. M. Protopapas, C.H. Keitel, P.L. Knight: Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  337. N.H. March: Atoms and Molecules in Intense Fields (Springer Verlag, Heidelberg 1997)

    Google Scholar 

  338. L. Di Mauro, M. Murnane, A. L’Huillier (eds.): Applications of ol. Highfield and Short Wavelength Sources (Plenum, New York 1998)

    Google Scholar 

  339. E. Turcu, B. Dance: X-rays from Laser Plasmas (Wiley, Chichester 1998)

    Google Scholar 

  340. D. Giulietti, L.A. Gizzi: X-ray emission from laser-produced plasmas. Riv. Nuovo Cimento 21, 1 (1998)

    Google Scholar 

  341. M. Lontano, G. Mourou, F. Pegoraro, E. Sindroni (eds.): Superstrong Fields in Plasmas, AIP Conf. Proc. 426 (AIP, New York 1998)

    Google Scholar 

  342. F.H.M. Faisal: Theory of Multiphoton Processes (Plenum, New York 1987)

    Google Scholar 

  343. P. Mulser: High Power Laser-Matter Interaction (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  344. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman: Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  345. J.H. Eberly, J. Javanainen, K. Rzazewski: Above-threshold ionization. Phys. Rep. 204, 331 (1991)

    Article  ADS  Google Scholar 

  346. L.F. DiMauro, P. Agostini: Ionization dynamics in strong laser fields. Adv. At. Mol. Opt. Phys. 35, 79 (1995)

    Article  ADS  Google Scholar 

  347. H.G. Muller, P. Agostini, G. Petite: Multiphoton Ionization. In: [9.217] p.1.

    Google Scholar 

  348. H.M. van Linden van den Heuvel, H.G. Muller: In: Multiphoton Processes, Studies in Modern Optics, Vol.8, ed. by S.J. Smith, P.L. Knight (Cambridge University Press, Cambridge 1988)

    Google Scholar 

  349. P.B. Corkum, N.H. Burnett, F. Brunel: Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989)

    Article  ADS  Google Scholar 

  350. K.C. Kulander: Time-dependent theory of multiphoton ionization of xenon. Phys. Rev. A 38, 778 (1988)

    Article  ADS  Google Scholar 

  351. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. Geusic: Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092 (1987)

    Article  ADS  Google Scholar 

  352. L.J. Fransinski, K. Codling, P.A. Hatherly: Science 246, 973 (1989)

    Google Scholar 

  353. R. Schinke: Photodissociation Dynamics (Cambridge University Press, Cambridge 1993)

    Google Scholar 

  354. K. Codling, L.J. Frasinski: Coulomb explosion of simple molecules in intense laser fields. Contemp. Phys. 35, 243 (1994)

    Article  ADS  Google Scholar 

  355. L.J. Fransinski, P.A. Hatherly, K. Codling, M. Larsson, A. Persson, C.-G. Wahlström: Multielectron dissociative ionization of CO2 in intense laser fields. J. Phys. B 27, L109 (1994)

    Article  ADS  Google Scholar 

  356. S. Hunsche, T. Starczewski, A. L’Huillier, A. Persson, C.-G. Wahlström, B. van Linden van den Heuvell, S. Svanberg: Ionization and fragmentation of C60 via multiphoton-multiplasmon excitation. Phys. Rev. Lett. 77, 1966 (1996)

    Article  ADS  Google Scholar 

  357. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes: Studies of multi-photon production of vacuumultraviolet radiation in rare gases. J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  358. M. Ferrey, A. L’Huillier, X.F. Li, L.A. Lompré, G. Mainfray, C. Manus: Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988)

    Article  ADS  Google Scholar 

  359. J.L. Krause, K.J. Schaefer, K.C. Kulander: High-harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535 (1992)

    Article  ADS  Google Scholar 

  360. A. L’Huillier, T. Auguste, Ph. Balcou, B. Carré, P. Monot, P. Salières, C. Altucci, M. Gaarde, J. Larsson, E. Mevel, T. Starczewski, S. Svanberg, C.-G. Wahlström, R. Zerne, K.S. Budil, T. Ditmire, M.D. Perry: Highorder harmonics: a coherent source in the XUV range, J. Nonlinear Opt. Phys. Mater. 4, 647 (1995)

    Article  ADS  Google Scholar 

  361. A. L’Huillier: Generation and application of high-order harmonics: ‘An alternative coherent short-pulse XUV source.’ In: X-Ray Lasers 1996, IOP Conference Series 151, ed. by. S. Svanberg, C.-G. Wahlström (IOP Publishing, Bristol 1996)

    Google Scholar 

  362. C. Lyngå: PhD Dissertation (Lund Institute of Technology, Lund 1999)

    Google Scholar 

  363. C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, A. L’Huillier: High-order harmonic generation in rare gases with an intense short-pulse low-frequency laser. Phys. Rev. A 48, 4709 (1993)

    Article  ADS  Google Scholar 

  364. J.J. Macklin, J.M. Kmetec, C.L. Gordon III: High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766 (1993)

    Article  ADS  Google Scholar 

  365. A. L’H uillier, Ph. Balcou: High-order harmonic generation in rare gases with a 1ps 1053 nm laser. Phys. Rev. Lett. 70, 774 (1993)

    Article  ADS  Google Scholar 

  366. S.G. Preston, A. Sanpera, M. Zepf, W.J. Blyth, C.G. Smith, J.S. Wark, M.H. Key, K. Burnett, M. Nakai, D. Neely, A.A. Offenberger: High-order harmonics of 248.6 nm KrF laser from helium and neon ions. Phys. Rev. A 53, 31 (1996)

    Article  ADS  Google Scholar 

  367. Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, H. Kapteyn: Generation of coherent soft X-rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 79, 2967 (1997)

    Article  ADS  Google Scholar 

  368. Ch. Spielmann, N.H. Burnett, S. Sartarnia, R. Koppnitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz: Generation of coherent X-rays in the water window using 5 femtosecond laser pulses. Science 278, 661 (1997)

    Article  ADS  Google Scholar 

  369. T. Starczewski, J. Larsson, C.-G. Wahlström, M.H.R. Hutchinson, J.E. Muffett, R.A. Smith, J.W.G. Tisch: Time-resolved harmonic generation in an ionizing gas. J. Phys. B 27, 3291 (1994)

    Article  ADS  Google Scholar 

  370. C. Altucci, T. Starczewski, C.-G. Wahlström, E. Mevel, B. Carré, A. L’Huillier: Influence of atomic density in high-order harmonic generation. J. Opt. Soc. Am. B 13, 148 (1996)

    Article  ADS  Google Scholar 

  371. J.M. Schins, P. Breger, P. Agostini, R.C. Constantinescu, H.G. Muller, A. Bouhal, G. Grillon, A. Antonetti, A. Mysyrowicz: Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics. J. Opt. Soc. Am. B 13, 197 (1996)

    Article  ADS  Google Scholar 

  372. P. Salières, A. L’Huillier, Ph. Antoine, M. Lewenstein: ‘Study of the spatial and temporal coherence of high-order harmonics.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.41, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 84

    Google Scholar 

  373. L. Roos, M.B. Gaarde, A. L’Huillier: Tailoring harmonic radiation to different applications using a genetic algorithm. J. Phys. B. 34, 5041 (2001)

    Article  ADS  Google Scholar 

  374. R. L’opez-Martens, J. Mauritsson, A. Johansson, J. Norin, A. L’Huillier: Time-frequency characterization of high-order harmonic pulses. Eur. Phys. J. D (2003), to appear

    Google Scholar 

  375. R. Bonifacio, C. Pellegrini, I.M. Narducci: Collective instabilities and highgain regime in a free electron laser. Opt. Commun. 50, 373 (1984)

    Article  ADS  Google Scholar 

  376. B.H. Wiik: The TESLA project: an accelerator facility for basic science. Nucl. Instrum. Methods Phys. Res. A 398, 1 (1997)

    Article  ADS  Google Scholar 

  377. C. Lyngå, F. Ossler, T. Metz, J. Larsson: A laser system providing radiation tunable from 35 nm to 2 μm. Appl. Phys. B 72, 913 (2001)

    Article  ADS  Google Scholar 

  378. J. Larsson, E. Mevel, R. Zerne, A. L’Huillier, C.-G. Wahlström, S. Svanberg: Two-colour time-resolved spectroscopy of helium using high-order harmonics. J. Phys. B 28, L53 (1995)

    Article  ADS  Google Scholar 

  379. C.V. Shank, J.E. Bjorkholm, H. Kogelnik: Distributed feedback dye laser. Appl. Phys. Lett. 18, 395 (1972)

    Article  ADS  Google Scholar 

  380. F. Schäfer, W. Schade, B. Garbe, V. Helbig: Temperature-tuned distributed feedback dye laser with high repetition rate. Appl. Opt. 29, 3950 (1990)

    Article  ADS  Google Scholar 

  381. G.J. Bengtsson, K. Hansen, J. Larsson, W. Schade, S. Svanberg: Determination of radiative lifetimes in neutral nitrogen using short laser pulses from a distributed feedback dye laser. Z. Physik D 22, 397 (1991)

    Article  ADS  Google Scholar 

  382. P. Cacchiani, W. Ubachs, P.C. Hinnen, C. Lyngå, A. L’Huillier, C.-G. Wahlström: Lifetime measurements of the E1∏, ν = 0 and ν = 1 states of 12C16O, 13C16O and 13C18O. Astrophys. J. 499, L223 (1998)

    Article  ADS  Google Scholar 

  383. D. Dechamps, L. Roos, C. Delfin, A. L’Huillier, C.-G. Wahlström: Twoand three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium. Phys. Rev. A 64, 031404/1–4 (2001)

    ADS  Google Scholar 

  384. P. Erman, A. Karawajcyk, E. Rachlew-Källne, E. Mevel, R. Zerne, A. L’Huillier, C.-G. Wahlström: Autoionization width of the NO Rydbergvalence state complex in the 11-12 eV region. Chem. Phys. Lett. 239, 6 (1995)

    Article  ADS  Google Scholar 

  385. K.S.E. Eikema, W. Ubachs, W. Wassen, W. Hogervorst: First laser excitation of the 4He 1 1 S-2 1 P resonance line at 58 nm. Phys. Rev. Lett. 71, 1690 (1993)

    Article  ADS  Google Scholar 

  386. W. Hogervorst, K.S.E. Eikema, W. Ubachs, W. Wassen: In: Laser Spectroscopy, ed. by M. Inguscio, M. Allegrini, A. Sasso (World Scientific, Singapore, 1996) p. 92

    Google Scholar 

  387. K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst: Precision spectroscopy on the Lyman-α transitions of H and He. In Laser Physics at the limit; eds. H. Figger, D. Meschede, C. Zimmerman (Springer Verlag, Berlin, Heidelberg 2002) p. 107

    Google Scholar 

  388. R. Haight, J. Bokor, J. Stark, R.H. Storz, R.R. Freeman, P.H. Bucksbaum: Picosecond time-resolved photoemission study of the InP (110) surface. Phys. Rev. Lett. 54, 1302 (1985)

    Article  ADS  Google Scholar 

  389. R. Haight, D.R. Peale: Antibonding state on the Ge(111)As surface: spectroscopy and dynamics. Phys. Rev. Lett. 70, 3979 (1993); Rev. Sci. Instrum. 65, 1853 (1994

    Article  ADS  Google Scholar 

  390. R. Haight: Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275 (1995)

    Article  ADS  Google Scholar 

  391. R. Haight, P.F. Seidler: High resolution atomic core level spectroscopy with laser harmonics. Appl. Phys. Lett. 65, 517 (1994)

    Google Scholar 

  392. H.S. Karlsson, G. Ghiaia, U.O. Karlsson: A system for time-and angle-resolved photo-electron spectroscopy based on an amplified titanium:sapphire laser system. Rev. Sci. Instrum. 67, 3610 (1996)

    Article  ADS  Google Scholar 

  393. S. Sorensen, O. Björneholm, S. Buil, D. Deschamps, T. Kihlgren, A. L’Huillier, J. Norin, G. Ohrwall, S. Sundin, S. Svensson, C.-G. Wahlström: Femtosecond pump-probe photoelectron spectroscopy of predissociative Rydberg states in acetylene. J. Chem. Phys. 112, 8038 (2000)

    Article  ADS  Google Scholar 

  394. R. Zerne, C. Altucci, M. Bellini, M.B. Gaarde, T.W. Hänsch, A. L’Huillier, C.-G. Wahlström: Phase-locked high-order harmonic sources. Phys. Rev. Lett. 79, 1006 (1997)

    Article  ADS  Google Scholar 

  395. M. Bellini, C. Lyngå, A. Tozzi, M.B. Gaarde, T.W. Hänsch, A. L’Huillier, C.-G. Wahlström: Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297 (1998)

    Article  ADS  Google Scholar 

  396. D. Deschamps, C. Lyngå, J. Norin, A. L’Huillier, C.-G. Wahlström, J.-F. Hergott, H. Merdji, P. Salières, M. Bellini, T.W. Hänsch: Extreme ultraviolet interferometry measurements with high-order harmonics. Opt. Lett. 25, 135 (2000)

    Google Scholar 

  397. G. Farkas, C. Toth: Proposal for attosecond light pulse generation using laser-induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168, 447 (1992)

    Article  ADS  Google Scholar 

  398. S.E. Harris, J.J. Macklin, T.W. Hänsch: Atomic scale temporal structure inherent to high-order harmonic generation. Opt. Commun. 100, 487 (1993)

    Article  ADS  Google Scholar 

  399. P.B. Corkum, N.H. Burnett, M.Y. Ivanov: Subfemtosecond pulses. Opt. Lett. 19, 1870 (1994)

    Article  ADS  Google Scholar 

  400. P. Antoine, A. L’Huillier, M. Lewenstein: Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234 (1996)

    Article  ADS  Google Scholar 

  401. I.P. Christov, N.H. Murnane, H.C. Kapteyn: High-harmonic generation of attosecond pulses in the ”single-cycle” regime. Phys. Rev. Lett. 78, 1251 (1997)

    Article  ADS  Google Scholar 

  402. E. Constant, V.D. Tatanukhin, A. Stolow, P.B. Corkum: Methods for the measurement of the duration of high-harmonic pulses. Phys. Rev. A 56, 3870 (1997)

    Article  ADS  Google Scholar 

  403. N.A. Papadogiannis, B. Witzel, C. Kalpouzos, D. Charalambidis: Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289 (1999)

    Article  ADS  Google Scholar 

  404. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H.G. Muller, and P. Agostini: Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689 (2001)

    Article  ADS  Google Scholar 

  405. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, F. Krausz: X-ray pulses approaching the attosecond frontier. Science 291, 1923 (2001)

    Article  ADS  Google Scholar 

  406. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P.B. Corkum, U. Heinzmann, M. Drescher, F. Krausz: Attosecond metrology. Nature 414, 511 (2001)

    Article  ADS  Google Scholar 

  407. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz: Time resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  408. D. Charalambidis, N.A. Papadogiannis, P. Tzallas, G.D. Tsakiris, K. Witte: Recent developments in attosecond pulse train metrology. Phys. Scr. T 105, 23 (2003)

    Article  ADS  Google Scholar 

  409. A. Baltuska, Th. Udem, M. Uiberacher, H. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz: Attosecond control of electronic processes by intense light fields. Nature 421, 611 (2003)

    Article  ADS  Google Scholar 

  410. P.H. Bucksbaum: Attophysics: Ultrafast control. Nature 421, 593 (2003)

    Article  ADS  Google Scholar 

  411. D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B.J. MacGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffman, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone, T.A. Weaver: Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110 (1985)

    Article  ADS  Google Scholar 

  412. R.C. Elton: The Physics of X-Ray Lasers (Academic Press, New York 1990)

    Google Scholar 

  413. J.J. Rocca, P.L. Hagelstein (eds.): Soft X-ray Lasers and Applications, Proc. SPIE Int. Soc. Opt. Eng. 2520 (SPIE, Bellingham 1995)

    Google Scholar 

  414. J.J. Rocca, L.B. Da Silva (eds.): Soft X-Ray Lasers and Applications II, Proc. SPIE Int. Soc. Opt. Eng. 3156 (SPIE, Bellingham 1997)

    Google Scholar 

  415. B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Smimkaveg, J.E. Trebes, R.S. Walling: Phys. Fluids B 4, 2326 (1992)

    Article  ADS  Google Scholar 

  416. B. Rus, A. Clarillon, B. Gauthé, P. Goedtkindt, P. Jaeglé, G. Jamelot, A. Klisnick, A. Sureau, P. Zeitoun: Observation of intense soft-X-ray lasing at the J = 0 to J = 1 transition in neonlike zinc. J. Opt. Soc. Am. B 11, 564 (1994)

    Article  ADS  Google Scholar 

  417. F. Albert, Ph. Zeitoun, P. Jaeglé, D. Joyeux, M. Boussoukaya, A. Clarillon, S. Hubert, G. Jamelot, A. Klisnick, D. Phalippou, D. Ros, A. Zeitoun-Fakiris: Metal-surface mapping by means of soft-x-ray interferometry. Phys. Rev. B 60, 11 089 (1999)

    Article  Google Scholar 

  418. Y. Nagata, K. Midorikawa, M. Obara, H. Tashiro, K. Toyoda: Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 3774 (1993)

    Article  ADS  Google Scholar 

  419. B.N. Chichkov, A. Egbert, H. Eichmann, C. Momma, S. Nolte, B. Wellegehausen: Soft-x-ray lasing to the ground states in low-charged oxygen ions. Phys. Rev. A 52, 1629 (1995)

    Article  ADS  Google Scholar 

  420. E. Fill, S. Borgström, J. Larsson, T. Starczewski, C.-G. Wahlström, S. Svanberg: XUV spectra of optical-field ionized plasmas. Phys. Rev. E 51, 6016 (1995)

    Article  ADS  Google Scholar 

  421. S. Borgström, E. Fill, T. Starczewski, J. Steingruber, S. Svanberg, C.-G. Wahlström: Time-resolved X-ray spectroscopy of optical-fieldionized plasmas. Laser Part. Beams 13, 459 (1995)

    Article  ADS  Google Scholar 

  422. B.E. Lemoff, G.Y. Yin, C.L. Gordon III, C.P.J. Barty, S.E. Harris: Demonstration of a 10 Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574 (1995)

    Article  ADS  Google Scholar 

  423. J.J. Rocha, V.N. Shlyapstev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, J.L.A. Chilla: Demonstration of a discharge-pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 2192 (1994)

    Article  ADS  Google Scholar 

  424. G. Tallents (ed.): X-Ray Lasers, IOP Conf. Ser. Vol.116 (Institute of Physics Publ., Bristol 1990)

    Google Scholar 

  425. E.E. Fill (ed.): X-Ray Lasers 1992, IOP Conf. Ser. Vol.125 (Institute of Physics Publ., Bristol 1992)

    Google Scholar 

  426. D.C. Eder, D.L. Matthews (eds.): X-Ray Lasers 1994, AIP Conf. Proc. Vol. 332 (AIP Press, New York 1994)

    Google Scholar 

  427. S. Svanberg, C.-G. Wahlström (eds.): X-Ray Lasers 1996, IOP Conf. Ser. Vol. 151 (Institute of Physics Publ., Bristol 1996)

    Google Scholar 

  428. Y. Kato, H. Takuma, H. Daido (eds.): X-Ray Lasers 1998, IOP Conf. Ser. Vol. 159 (Institute of Physics Publ., Bristol 1999)

    Google Scholar 

  429. G. Jamelot, C. Möller, A. Klisnick (eds.): X-Ray Lasers 2000 (EDP Sciences, Les Ulis 2001)

    Google Scholar 

  430. J.J. Rocca, J. Dunn, S. Suckewer (eds.): X-Ray Lasers 2002, AIP Conf. Proc. Vol. 641 (AIP Press, New York 2002)

    Google Scholar 

  431. J.D. Kmetec, C.L. Gordon III, J.J. Macklin, B.E. Lemoff, G.S. Brown, S.E. Harris: MeV X-ray generation with a femtosecond laser. Phys. Rev. Lett. 68, 1527 (1992)

    Article  ADS  Google Scholar 

  432. K. Herrlin, G. Svahn, C. Olsson, H. Pettersson, C. Tillman, A. Persson, C.-G. Wahlström, S. Svanberg: Generation of X-rays for medical imaging by high-power lasers: Preliminary results. Radiology 189, 65 (1993)

    Google Scholar 

  433. C. Tillman, S. Johansson, B. Erlandsson, M. Grätz, B. Hemdal, A. Almén, S. Mattson, S. Svanberg: High-resolution spectroscopy of laser-produced plasmas in the photon energy range above 10 keV. Nucl. Instrum. Methods A 394, 387 (1997)

    Article  ADS  Google Scholar 

  434. G. Hölzer, E. Förster, M. Grätz, C. Tillman, S. Svanberg: X-ray crystal spectroscopy of sub-picosecond laser-produced plasmas beyond 50 keV. J. X-Ray Sci. Technol. 7, 50 (1997)

    Article  Google Scholar 

  435. C. Tillman, A. Persson, C.-G. Wahlström, S. Svanberg, K. Herrlin: Imaging using hard X-rays from a laser-produced plasma. Appl. Phys. B 61, 333 (1995)

    Article  ADS  Google Scholar 

  436. A. Sjögren, M. Harbst, C.-G. Wahlström, S. Svanberg, C. Olsson: Highrepetition-rate, hard x-ray radiation from a laser-produced plasma: Photon yield and application considerations. Rev. Sci. Instr. 74, 2300 (2003)

    Article  ADS  Google Scholar 

  437. R. Lewis: Medical applications of synchrotron radiation X-rays. Phys. Med. Biol. 42, 1213 (1997)

    Article  Google Scholar 

  438. F.A. Dilmanian, X.Y. Wu, E.C. Parsons, B. Ren, J. Kress, T.M. Button, L.D. Chapman, J.A. Coderre, P. Giron, D. Greenberg, D.J. Krus, Z. Liang, D. Marcovici, M.J. Petersen, C.T. Roque, M. Shleifer, D.N. Slatkin, W.C. Tomlinson, K. Yamamoto, J. Zhou: Single-and dual-energy CT with monochromatic synchrotron X-rays. Phys. Med. Biol. 42, 371 (1997)

    Article  Google Scholar 

  439. C. Tillman, I. Mercer, S. Svanberg, K. Herrlin: Elemental biological imaging by differential absorption using a laser-produced X-ray source. J. Opt. Soc. Am. B 13, 209 (1996)

    Article  ADS  Google Scholar 

  440. C.L. Gordon III, G.Y. Yin, B.E. Lemoff, P.E. Bell, C.P.J. Barty: Timegated imaging with an ultrashort-pulse laser-produced-plasma X-ray source. Opt. Lett. 20, 1056 (1995)

    Article  ADS  Google Scholar 

  441. M. Grätz, A. Pifferi, C.-G. Wahlström, S. Svanberg: Time-gated imaging in radiology: Theoretical and experimental studies. IEEE J. Sel. Topics Quantum Electron. 2, 1041 (1996)

    Google Scholar 

  442. M. Grätz, L. Kiernan, C.-G. Wahlström, S. Svanberg: Time-gated X-ray tomography. Appl. Phys. Lett. 73, 2899 (1998)

    Article  ADS  Google Scholar 

  443. M. Grätz, L. Kiernan, K. Herrlin: Time-gated imaging in planar and tomographic X-ray imaging. Med. Phys. 26, 438 (1999)

    Article  Google Scholar 

  444. C. Tillman, G. Grafström, A.-Ch. Jonsson, B.-A. Jönsson, I. Mercer, S. Mattson, S.-E. Strandh, S. Svanberg: Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiology 213, 860 (1999)

    Google Scholar 

  445. P.M. Renzepis, J.R. Helliwell (eds.): Time-Resolved Diffraction (Oxford University Press, Oxford 1997)

    Google Scholar 

  446. J. Wark: Time-resolved X-ray diffraction. Contemp. Phys. 37, 205 (1996)

    Article  ADS  Google Scholar 

  447. C. Rischel, A. Rousse, I. Uschmann, O.-A. Albouy, J.-P. Geindre, P. Audebert, J.C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti: Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 370, 480 (1997)

    Google Scholar 

  448. R. Jimenez, C. Rose-Petruck, T. Guo, K.R. Wilson, C.P.J. Barty: ‘Timeresolved X-ray diffraction of GaAs with a 30 fs laser driven plasma source.’ In: Ultrafast Phenomena XI, ed. by W. Zinth, J.G. Fujimoto, T. Elsaesser, D. Wiersma (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  449. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin: Nature 410, 65 (2001)

    Article  ADS  Google Scholar 

  450. O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, R. Wouts: Projecting picosecond lattice dynamics through X-ray topography. Appl. Phys. Lett. 80, 3727 (2002)

    Article  ADS  Google Scholar 

  451. L. Larsson, Z. Chang, E. Judd, P.J. Schuck, P.H. Bucksbaum, R.W. Lee, H.A. Padmore, R.W. Falcone: Ultrafast structural changes measured by time-resolved X-ray diffraction. Appl. Phys. A 66, 587 (1998)

    Article  ADS  Google Scholar 

  452. M. Wulff, F. Schotte, G. Naylor, D. Bourgeois, K. Moffat, G. Mourou: Time-resolved structures of macromolecules at the ESRF: Single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis. Nucl. Instrum. Methods Phys. Res. A 398, 69 (1997)

    Google Scholar 

  453. D.A. Reis, M.F. DeCamp, P.H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M.M. Murnane, J. Larsson, Th. Missalla, J.S. Wark: Probing impulsive strain propagation with X-ray pulses. Phys. Rev. Lett. 86, 3072 (2001)

    Article  ADS  Google Scholar 

  454. J. Larsson, A. Allen, P.H. Bucksbaum, R.W. Falcone, A. Lindenberg, G. Naylor, T. Misalla, D.A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, J.S. Wark: Pico-second X-ray diffraction studies in laser-excited acoustic phonons in InSb. App. Phys. A75, 467 (2002)

    ADS  Google Scholar 

  455. D. Umstadter, T.B. Norris (eds.): Feature Issue on Optics of Relativistic Electrons. IEEE J. Quantum Electron. 33, 1877 (1997)

    Google Scholar 

  456. D. Umstadter, S.-Y. Chen, R. Wagner, A. Maksimchuk, G. Sarkisov: Nonlinear optics in relativistic plasmas. Opt. Express 2, 282 (1998)

    Article  ADS  Google Scholar 

  457. J. Fan, T.R. Clark, H.M. Milchberg: Generation of a plasma waveguide in an elongated, high repetition rate gas jet. Appl. Phys. Lett. 73, 3064 (1998)

    Google Scholar 

  458. E. Esarey, P. Sprangle, J. Krall, A. Ting: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. PS-24, 252 (1996)

    Article  ADS  Google Scholar 

  459. R. Wagner, S.-Y. Chen, A. Maksimchuk, D. Umstadter: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 3125 (1997)

    Article  ADS  Google Scholar 

  460. A. Maksimchuk, S. Gu, K. Filippo, G. Mourou, D. Umstadter: Observation of high-energy proton beam in interaction of high-intensity subpicosecond laser pulse with thin foil. APS Div. of Plasma Physics Meeting, Seattle 1999 (AIP News Update 457, Nov. 15 1999)

    Google Scholar 

  461. S. Karsch, S. Düsterer, H. Schwoerer, F. Ewald, D. Habs, M. Hegelich, G. Pretzler, A. Pukhov, K. Witte, R. Sauerbrey: High-intensity laser induced ion acceleration from heavy water droplets. Phys. Rev. Lett. 91, 015001 (2003)

    Article  ADS  Google Scholar 

  462. S. Matinyan: Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199 (1998)

    Article  ADS  Google Scholar 

  463. G. Pretzler, A. Saemann, A. Pukov, D. Rudolph, T. Schätz, U. Schramm, P. Thirolf, D. Habs, K. Eidmann, G.D. Tsakiris, J. Meyer-ter-Vehn, K.J. Witte: Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 2 (1998)

    Article  Google Scholar 

  464. K. Ledingham, P.A. Norreys: Nuclear physics merely using a light source. Contemp. Phys. 40, 367 (1999)

    Article  ADS  Google Scholar 

  465. G. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, C.-G. Wahlström, D. Habs: Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 2662 (2000)

    Article  ADS  Google Scholar 

  466. A. Andreev et al.: Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys. 91, 1163 (2000)

    Article  ADS  Google Scholar 

  467. H. Schwoerer, F. Ewald, R. Sauerbrey, J. Galy, J. Magill, V. Rondinella, R. Schenkel, T. Butz: Fission of actinides using a tabletop laser. Europhys. Lett. 66, 47 (2003)

    Article  ADS  Google Scholar 

  468. P.A. Norreys et al.: Phys. Plasmas 6, 2150 (1999)

    Article  ADS  Google Scholar 

  469. M. Chown: A cheap proton source could transform radiotherapy. New Scientist, Dec. 4, 1999

    Google Scholar 

  470. G.C. Baldwin, J.C. Solem: Rev. Mod. Phys. 69 1085 (1997)

    Article  ADS  Google Scholar 

  471. V.S. Letokhov: in Frontiers in Laser Spectroscopy, Proceedings of the Les Houches Summer Schools, Vol.2, ed. by R. Ballian, S. Haroche, S. Liberman (North-Holland, Amsterdam 1977)

    Google Scholar 

  472. C.B. Collins, F. Davanloo, M.C. Yosif, R. Dussart, J.M. Hicks, S.A. Karamian, C.A. Ur, I.I. Popescu, V.I. Kirischuk, J.J. Carroll, H.E. Roberts, P. McDaniel, C.E. Crist: Accelerated emission of gamma rays from the 31 yr isomer 178-Hf induced by X-ray irradiation. Phys. Rev. Lett. 82, 695 (1999)

    Article  ADS  Google Scholar 

  473. O. Kocharovskaya, R. Kolesov, Yu. Rostovtsev: Lasing without inversion: a new path to gamma-ray laser. Laser Physics 9, 745 (1999)

    Google Scholar 

  474. W.J. Hogan (ed.): Energy from Inertial Fusion (IAEA, Vienna 1995)

    Google Scholar 

  475. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodsworth, E.M. Campbell, M.D. Perry: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  476. M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky: Petawatt laser pulses. Opt. Lett. 24, 160 (1999)

    Article  ADS  Google Scholar 

  477. K. Fredriksson, H. Lundberg, S. Svanberg: Fine-and hyperfine structure investigation in the 5D-nF series of cesium. Phys. Rev. A 21, 241 (1980)

    Article  ADS  Google Scholar 

  478. K. Fredriksson, L. Nilsson, S. Svanberg: Stark interaction for alkali atoms (unpublished report, 1980)

    Google Scholar 

  479. M.A. Zaki Ewiss, W. Hogervorst, W. Vassen, B.H. Post: The Stark effect in the 6snf Rydberg series of barium. Z. Phys. A 322, 211 (1985)

    Article  ADS  Google Scholar 

  480. R. Frisch: Experimenteller Nachweis des Einsteinschen Strahlungsruckstosses. Z. Physik 86, 42 (1933)

    Article  ADS  Google Scholar 

  481. J.-L. Piqué, J.-L. Vialle: Atomic-beam deflection and broadening by recoils due to photon absorption or emission. Opt. Commun. 5, 402 (1972)

    Article  ADS  Google Scholar 

  482. R. Schieder, H. Walther, L. Wöste: Atomic beam deflection by the light of a tunable dye laser. Opt. Commun. 5, 337 (1972)

    Article  ADS  Google Scholar 

  483. A.P. Kazantzev: Acceleration of atoms by a resonant field. Sov. Phys. JETP 36, 1628 (1973)

    Google Scholar 

  484. F. Touchard, J.M. Serre, S. Büttgenbach, P. Guimbal, R. Klapisch, M. de Saint Simon, C. Thibault, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, J.-L. Vialle: Electric quadrupole moments and isotopic shifts of radioactive sodium isotopes. Phys. Rev. C 25, 2756 (1982)

    Article  ADS  Google Scholar 

  485. S. Liberman: High resolution laser spectroscopy of radioactive atoms. In: [9.30] p. 162

    Google Scholar 

  486. H.T. Duong, P. Juncar, S. Liberman et al.: First observation of the blue optical lines of francium. Europhys. Lett. 3, 175 (1987)

    Article  ADS  Google Scholar 

  487. S.V. Andreev, V.S. Letokhov, V.I. Mishin: Laser resonance photoionization spectroscopy of Rydberg levels in Fr. Phys. Rev. Lett. 59, 1274 (1987)

    Article  ADS  Google Scholar 

  488. W. Ertmer, B. Hofer: Zero-field hyperfine structure measurements of metastable states 3d 2 4s 4 F 3/2,9/2 of 45Sc using laser fluorescence atomicbeam-magnetic-resonance technique. Z. Phys. A 276, 9 (1976)

    Article  ADS  Google Scholar 

  489. S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laserfluorescence molecular-beam-resonance technique. Phys. Rev. Lett. 35, 785 (1975)

    Article  ADS  Google Scholar 

  490. P. Grundevik, M. Gustavsson, I. Lindgren, G. Olsson, L. Robertsson, A. Rosén, S. Svanberg: Precision method for hyperfine structure studies in low-abundance isotopes: The quadrupole moment of 43Ca. Phys. Rev. Lett. 42, 1528 (1979)

    Article  ADS  Google Scholar 

  491. W.H. Wing, G.A. Ruff, W.E. Lamb, J.J. Spezeski: Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36, 1488 (1976)

    Article  ADS  Google Scholar 

  492. S.L. Kaufmann: High resolution laser spectroscopy in fast beams. Opt. Commun. 17, 309 (1976)

    Article  ADS  Google Scholar 

  493. E.W. Otten: ‘Hyperfine and isotope shift measurements.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977)

    Google Scholar 

  494. P. Jaquinot, R. Klapisch: Hyperfine spectroscopy of radioactive atoms. Rep. Prog. Phys. 42, 773 (1979)

    Article  ADS  Google Scholar 

  495. R. Neugart, S.L. Kaufman, W. Klempt, G. Moruzzi: High resolution spectroscopy in fast beams. In: [9.25] p. 446

    Google Scholar 

  496. R. Neugart: ‘Collinear fast-beam laser spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 75

    Google Scholar 

  497. H.J. Kluge: ‘Optical spectroscopy of shortlived isotopes.’ In: Progress in Atomic Spectroscopy, Pt. B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 727

    Google Scholar 

  498. H.J. Kluge: Hyperfine Interact. 24-26, 69 (1985)

    Article  ADS  Google Scholar 

  499. H. H Stroke: ‘Isotopic shifts.’ In: Atomic Physics 8, ed. by I. Lindgren, A. Rosen, S. Svanberg (Plenum, New York 1983) p. 509

    Google Scholar 

  500. S. Svanberg: Laser spectroscopy applied to the study of hyperfine interactions. Hyperfine Interact. 15/16, 111 (1983)

    Article  ADS  Google Scholar 

  501. H.T. Schmidt, P. Forck, M. Grieser, D. Habs, J. Kenntner, G. Miersch, R. Repnow, U. Schramm, T. Schussler, D. Schwam, A. Wolf: Phys. Rev. Lett. 72, 1616 (1994)

    Article  ADS  Google Scholar 

  502. S. Mannervik, L. Broström, J. Lidberg, L.O. Norlin, P. Royen: Strong hyperfine induced quenching of a metastable state in Xe+ observed by hyperfine selective laser probing of a stored ion beam. Phys. Rev. Lett. 76, 3675 (1996)

    Article  ADS  Google Scholar 

  503. J. Lidberg, A. Al-Khalidi, L.-O. Norlin, P. Royen, X. Tordoir, S. Mannervik: Lifetime of the metastable 3d 2 D 3/2 and 3d 2 D 5/2 levels in Ca+ measured by laser probing of a stored ion beam. J. Phys. B 32, 757 (1999)

    Article  ADS  Google Scholar 

  504. M. Larsson: Atomic and molecular physics with ion storage rings. Rep. Prog. Phys. 58, 1267 (1995)

    Article  ADS  Google Scholar 

  505. Th.U. Kühl: ‘Storage ring laser spectroscopy.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 40, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 114

    Google Scholar 

  506. P.H. Mokler, Th. Stöhlker: ‘The physics of highly charged heavy ions revealed by storage/cooler rings.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 297

    Google Scholar 

  507. M. Larsson, H. Danared, J.R. Mowat, P. Sigray, G. Sundström, L. Broström, A. Filevich, A. Källberg, S. Mannervik, K.G. Rensfelt, S. Datz: Direct high-energy neutral-channel dissociative recombination of cold H3 + in an ion storage ring. Phys. Rev. Lett. 70, 430 (1993)

    Article  ADS  Google Scholar 

  508. S. Datz, G. Sundström, Ch. Biedermann, L. Broström, H. Danared, S. Mannervik, J.R. Mowat, M. Larsson: Branching processes in the dissociative recombination of H3 +. Phys. Rev. Lett. 74, 896 (1995)

    Article  ADS  Google Scholar 

  509. G. Budker: In: Proc. Int. Symp. on Electron and Positron Storage Rings, ed. by H. Zyngier, E. Cremieux-Alcan (Presses Universitaire, Saclay 1966)

    Google Scholar 

  510. G. Budker et al.: in Proc. IV All-Union Meeting on Accelerators of Charged Particles, IEEE Trans. Nucl. Sci. VS-22, 2093 (1975)

    Google Scholar 

  511. H. Danared, G. Andler, L. Bagge, C.J. Herrlander, J. Hilke, J. Jeansson, A. Källberg, A. Nilsson, A. Paál, K.-G. Rensfelt, U. Rosengård, J. Starker, M. af Ugglas: Electron cooling with an ultracold electron beam. Phys. Rev. Lett. 72, 3775 (1994)

    Article  ADS  Google Scholar 

  512. S. Schröder, R. Klein, N. Roos, M. Gerhard, R. Grieser, G. Huber, A. Karafillides, M. Krieg, N. Schmidt, T. Kuhl, R. Neumann, V. Balykin et al.: First laser cooling of relativistic ions in a storage ring. Phys. Rev. Lett. 64, 2901 (1990)

    Article  ADS  Google Scholar 

  513. J.S. Hangst, M. Kristensen, J.S. Nielsen, O. Poulsen, J.P. Schiffer, P. Shi: Laser cooling of a stored ion beam to 1mK. Phys. Rev. Lett. 67, 1238 (1991)

    Article  ADS  Google Scholar 

  514. D.M. Maletic, A.G. Ruggiero (eds.): Crystalline Beams and Related Issues (World Scientific, Singapore 1996)

    Google Scholar 

  515. L.H. Andersen, T. Andersen, P. Hvelplund: Studies of negative ions in storage rings. Adv. At. Mol. Opt. Phys. 38, 155 (1998)

    Article  ADS  Google Scholar 

  516. D. Hanstorp: An ion beam apparatus for collinear photodetachment experiments. Nucl. Instrum. Methods B 100, 165 (1995)

    Article  ADS  Google Scholar 

  517. D. Hanstorp. G. Haeffler, A.E. Klinkmüller, U. Ljungblad, U. Berzinsh, I.Yu. Kiyan, D.J. Pegg: ‘Two-electron dynamics in photodetachment.’ In: Modern Trends in Atomic Physics, Adv. Quantum Chem. 30, 311 (1998)

    Google Scholar 

  518. D. Hanstorp, P. Devynck, W.G. Graham, J.R. Peterson: Observation of metastable autodetaching Ca-. Phys. Rev. Lett. 63, 368 (1989)

    Article  ADS  Google Scholar 

  519. V.V. Petrunin, J.D. Voldstad, P. Balling, P. Kristensen, T. Andersen, H.K. Haugen: Resonant ionization spectroscopy of Ba- metastable and stable ions. Phys. Rev. Lett. 75, 1911 (1995)

    Article  ADS  Google Scholar 

  520. P.H. Lee, M.L. Skolnick: Saturated neon absorption inside a 6328 Å laser. Appl. Phys. Lett. 10, 303 (1967)

    Article  ADS  Google Scholar 

  521. W.E. Lamb Jr.: Theory of the optical laser. Phys. Rev. A 134, 1429 (1964)

    Article  ADS  Google Scholar 

  522. W.R. Rowley, B.W. Jolliffe, K.C. Schotton, A.J. Wallard, P.T. Woods: Laser wavelength measurements and the speed of light. Opt. Quantum Electron. 8, 1 (1976)

    Article  ADS  Google Scholar 

  523. J.L. Hall: Stabilized lasers and precision measurements. Science 202, 147 (1978)

    Article  ADS  Google Scholar 

  524. K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells: Laser frequency measurements: A review, limitations, extension to 197 THz (1.5 mm). In: [9.25] p. 57

    Google Scholar 

  525. D.A. Jennings, F.R. Petersen, K.M. Evenson: Direct frequency measurement of the 260 THz (1.15 μ) 20Ne laser: And beyond. In: [9.26] p. 31

    Google Scholar 

  526. D.A. Jennings, C.R. Pollock, F.R. Petersen, R.E. Drullinger, K.M. Evenson, J.S. Wells: Direct frequency measurement of the I2 stabilized He-Ne 473 THz (633 nm) laser. Opt. Lett. 8, 136 (1983)

    Article  ADS  Google Scholar 

  527. R.G. DeVoe, R.G. Brewer: Laser frequency division and frequency stabilization. Phys. Rev. A 30, 2827 (1984)

    Article  ADS  Google Scholar 

  528. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, R.G. Brewer: Precision optical-frequency difference measurements. Phys. Rev. A 37, 1802 (1988)

    Article  ADS  Google Scholar 

  529. T. Wilkie: Time to remeasure the metre. New Scientist (Oct. 27, 1983)

    Google Scholar 

  530. Documents concerning the new definition of the metre. Metrologia 19, 163 (1984)

    Google Scholar 

  531. M.D. Levenson, A.L. Schawlow: Hyperfine interactions in molecular iodine. Phys. Rev. A 6, 10 (1972)

    Article  ADS  Google Scholar 

  532. T.W. Hänsch, I.S. Shahin, A.L. Schawlow: High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser. Phys. Rev. Lett. 27, 707 (1971)

    Article  ADS  Google Scholar 

  533. C. Bordé: Spectroscopie d’absorption saturée de diverses molécules au moyen des lasers á gas carbonique et á prooxyde d’azote. C. R. Acad. Sci. B 271, 371 (1970)

    Google Scholar 

  534. S. Svanberg, G.-Y. Yan, T.P. Duffey, A.L. Schawlow: High-contrast Doppler-free transmission spectroscopy. Opt. Lett. 11, 138 (1986)

    Article  ADS  Google Scholar 

  535. S. Svanberg, G.-Y. Yan, T.P. Duffey, W.-M. Du, T.W. Hänsch, A.L. Schawlow: Saturation spectroscopy for optically thick atomic samples. J. Opt. Soc. Am. B 4, 462 (1987)

    Article  ADS  Google Scholar 

  536. C. Wieman, T.W. Hänsch: Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976)

    Article  ADS  Google Scholar 

  537. T.W. Hänsch, I.S. Shahin, A.L. Schawlow: Optical resolution of the Lamb shift in atomic hydrogen. Nature 235, 56 (1972)

    Google Scholar 

  538. T.W. Hänsch, M.H. Nayfeh, S.A. Lee, S.M. Curry, I.S. Shahin: Precision measurement of the Rydberg constant by laser saturation spectroscopy of the Balmer-α line in hydrogen and deuterium. Phys. Rev. Lett. 32, 1336 (1974)

    Article  ADS  Google Scholar 

  539. J.E.M. Goldsmith, E.W. Weber, T.W. Hänsch: New measurement of the Rydberg constant using polarization spectroscopy of H. Phys. Rev. Lett. 41, 1525 (1978)

    Article  ADS  Google Scholar 

  540. K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Kön ig, T.W. Hänsch: Theory of the energy levels and precise two-photon spectroscopy of atomic hydrogen and deuterium. J. Phys. B 29, 177 (1996)

    Article  ADS  Google Scholar 

  541. P. Zhao, W. Lichten, J.C. Bergquist, H.P. Layer: Remeasurement of the Rydberg constant. Phys. Rev. A 34, 5138 (1986)

    Article  ADS  Google Scholar 

  542. P. Zhao, W. Lichten, H. Layer, J. Bergquist: New value for the Rydberg constant from the hydrogen Balmer-β transition. Phys. Rev. Lett. 58, 1293 (1987)

    Article  ADS  Google Scholar 

  543. F. Biraben, J.C. Garreau, L. Julien: Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states. Europhys. Lett. 2, 925 (1986); and in [9.30] p.8

    Article  ADS  Google Scholar 

  544. T.W. Hänsch, A.L. Schawlow, G.W. Series: The spectrum of atomic hydrogen. Sci. Am. 240(3) 72 (1979)

    Article  ADS  Google Scholar 

  545. G.W. Series (ed.): The Spectrum of Atomic Hydrogen: Advances (World, Scientific, Singapore 1988)

    Google Scholar 

  546. G.F. Bassani, M. Inguscio, T.W. Hänsch (eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  547. B. Cagnac, M.D. Plimmer. L. Julien, F. Biraben: The hydrogen atom, a tool for metrology. Rep. Prog. Phys. 57, 853 (1995)

    Article  ADS  Google Scholar 

  548. B. Cagnac: ‘Two-photon method for metrology in hydrogen.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer Verlag, Heidelberg, Berlin 1997)

    Google Scholar 

  549. A.I. Ferguson, J.M. Tolchard: Laser spectroscopy of atomic hydrogen. Contemp. Phys. 28, 383 (1987)

    Article  ADS  Google Scholar 

  550. H.R. Schlossberg, A. Javan: Saturation behaviour of a Doppler-broadened transition involving levels with closely spaced structure. Phys. Rev. 150, 267 (1966)

    Article  ADS  Google Scholar 

  551. T.W. Hänsch, P. Toschek: Theory of a three-level gas laser amplifier. Z. Physik 236, 213 (1970)

    Article  ADS  Google Scholar 

  552. M.A. Bouchiat, L. Pottier: An atomic preference between left and right. Sci. Am. 250(6), 76 (1984)

    Article  Google Scholar 

  553. M.-A. Bouchiat, L. Pottier: Optical experiments and weak interactions. Nature 234, 1203 (1986)

    Google Scholar 

  554. M.-A. Bouchiat, C. Bouchiat: Parity violation in atoms. Rep. Prog. Phys. 60, 1352 (1997)

    Article  ADS  Google Scholar 

  555. E.D. Commins: Parity violation in atoms. In: [9.30] p. 43

    Google Scholar 

  556. T.P. Emmons, E.N. Fortson: ‘Parity conservation in atoms.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 237

    Google Scholar 

  557. D.N. Stacey: ‘Parity non-conservation in atoms.’ In: Atomic Physics 13, ed. by H. Walther, T.W. Hänsch, B. Neizert (AIP Publishing, New York 1993) p. 46

    Google Scholar 

  558. P.A. Vetter, D.M. Meekhof, P.K. Majumder, S.K. Lamoreaus, E.N. Fortson: Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium. Phys. Rev. Lett. 74, 2658 (1995)

    Article  ADS  Google Scholar 

  559. M.J.D. MacPherson, K.P. Zetie, R.B. Warrington, D.N. Stacey, J.P. Hoare: Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 67, 2784 (1991)

    Article  ADS  Google Scholar 

  560. M.C. Noecker, B.P. Masterson, C.E. Wieman: Precision measurement of parity nonconservation in atomic cesium: A low-energy test of the electroweak theory. Phys. Rev. Lett. 61, 310 (1988)

    Article  ADS  Google Scholar 

  561. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J. L Roberts, C.E. Tanner, C.E. Wieman: Measuerement of parity nonconservation and an anapole moment in cesium. Science 275, 1759 (1997)

    Article  Google Scholar 

  562. S.C. Bennett, C.E. Wieman: Phys. Rev. Lett. 82, 2484 (1999); ibid. 83, 889 (1999

    Article  ADS  Google Scholar 

  563. S.A. Blundell, W.R. Johnson, J. Sapirstein: High-accuracy calculation of the 6 S1/2-7 S1/2 parity-nonconserving transition in atomic cesium and implications for the standard model. Phys. Rev. Lett. 65, 1411 (1990); Phys. Rev. A 43, 3407 (1991

    Article  ADS  Google Scholar 

  564. A.C. Hartley, E. Lindroth, A. Mårtensson-Pendrill: Parity nonconservation and electric dipole moments in caesium and thallium. J. Phys. B 23, 3417 (1990)

    Article  ADS  Google Scholar 

  565. Ya.B. Zel′Dovich: Electromagnetic interaction with parity violation. Sov. Phys. JETP 6, 1184 (1968)

    Google Scholar 

  566. V.F. Dimitriev, I.B. Kriplovich, V.B. Telitsin: Nuclear anapole moments in single-particle approximation. Nucl. Phys. A 577, 691 (1994)

    Article  ADS  Google Scholar 

  567. C. Bouchiat, C.A. Piketty: Nuclear spin dependent parity violating electron-nucleus interaction in heavy atoms. The anapole moment and the perturbation of the hadronic vector neutral current by the hyperfine interaction. Phys. Lett. B 269, 195 (1991)

    Article  ADS  Google Scholar 

  568. W.C. Haxton, C.E. Wieman: Atomic parity nonconservation and nuclear anapole moments. Ann. Rev. Nucl. Part. Sci.; Annual Reviews 2001, 261 (2001)

    Google Scholar 

  569. V.W. Hughes: ‘High precision atomic spectroscopy of muonium and simple muonic atoms.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer Verlag, Heidelberg, Berlin 1997)

    Google Scholar 

  570. V.W. Hughes: High-precision spectroscopy of positronium and muonium. Adv. Quantum Chem. 30, 99 (1998)

    Article  ADS  Google Scholar 

  571. D. Taqqu, F. Biraben, C.A.N. Conde, T.W. Hänsch, F.J. Hartmann, P. Hauser, P. Indelicato, P. Knowles, F. Kottmann, F. Mulhauser, C. Petitjean, R. Pohl, P. Rabinowitz, R. Rosenfelder, J.M.F. Santos, W. Scott, L.M. Simons, J.F.C.A. Veloso: Laser spectroscopy of the Lamb shift in muonic hydrogen. Hyperfine Interact. 119, 317 (1999)

    Article  ADS  Google Scholar 

  572. J. Eades (ed.): Proceedings of the Antihydrogen Workshop, July 1992, Hyperfine Interact. 76 (1993)

    Google Scholar 

  573. G. Gabrielse, D.S. Hall, A. Khabbaz, T. Roach, P. Yesley, C. Heimann, H. Kalinowsky, W. Jhe: ‘Comparing the antiproton and the proton and progress towards antihydrogen.’ In: Atomic Physics 15, ed. by H.B. van Linden van den Heuvell, J.T.M. Walraven, M.W. Reynolds (World Scientific, Singapore 1997) p. 446

    Google Scholar 

  574. K.S.E. Eikema, J. Walt, T.W. Hänsch: Continuous wave coherent Lymanalpha radiation. Phys. Rev. Lett. 83, 3828 (1999)

    Article  ADS  Google Scholar 

  575. M. Amoretti et al.: Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  576. G. Gabrielse, N.S. Bowen, P. Oxley, A. Speck, C.H. Storry, J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefxick, J. Walz, H. Pittner, T.W. Hänsch, E.A. Hessels: Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213 401 (2002)

    Google Scholar 

  577. M.S. Sorem, A.L. Schawlow: Saturation spectroscopy in molecular iodine by intermodulated fluorescence. Opt. Commun. 5, 148 (1972)

    Article  ADS  Google Scholar 

  578. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: Doppler-free intermodulated optogalvanic spectroscopy. Phys. Rev. Lett. 42, 1046 (1979)

    Article  ADS  Google Scholar 

  579. D.R. Lyons, A.L. Schawlow, G.-Y. Yan: Doppler-free radiofrequency optogalvanic spectroscopy. Opt. Commun. 38, 35 (1981)

    Article  ADS  Google Scholar 

  580. E.E. Marinero, M. Stuke: Doppler-free optoacoustic spectroscopy. Opt. Commun. 30, 349 (1979)

    Article  ADS  Google Scholar 

  581. T.P. Duffey, D. Kammen, A.L. Schawlow, S. Svanberg, H.-R. Xia, G.-G. Xiao, G.-Y. Yan: Laser spectroscopy using beam overlap modulation. Opt. Lett. 10, 597 (1986)

    Article  ADS  Google Scholar 

  582. T.W. Hänsch, D.R. Lyons, A.L. Schawlow, A. Siegel, Z.-Y. Wang, G.-Y. Yan: Polarization intermodulated excitation (POLINEX) spectroscopy of helium and neon. Opt. Commun. 37, 87 (1981)

    Article  ADS  Google Scholar 

  583. M. Goeppert-Mayer: Uber Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273 (1931)

    Article  Google Scholar 

  584. L.S. Vasilenko, V.P. Chebotayev, A.V. Shishaev: Line shape of a twophoton absorption in a standing-wave field in a gas. JETP Lett. 12, 113 (1970)

    ADS  Google Scholar 

  585. F. Biraben, B. Cagnac, G. Grynberg: Experimental evidence of two-photon transition without Doppler broadening. Phys. Rev. Lett. 32, 643 (1974)

    Article  ADS  Google Scholar 

  586. G. Grynberg, B. Cagnac: Doppler-free multiphoton spectroscopy. Rep. Prog. Phys. 40, 791 (1977)

    Article  ADS  Google Scholar 

  587. N. Bloembergen, M.D. Levenson: Dopplerfree two-photon absorption spectroscopy. Phys. Rev. Lett. 31, 645 (1974)

    Google Scholar 

  588. T.W. Hänsch, K.C. Harvey, G. Meisel, A.L. Schawlow: Two-photon spectroscopy of Na 3s — 4d without Doppler broadening using a cw dye laser. Opt. Commun. 11, 50 (1974)

    Article  ADS  Google Scholar 

  589. H. Rinneberg, J. Neukammer, G. Jönsson, H. Hieronymus, A. König, K. Vietzke: High-n Rydberg atoms and external fields. Phys. Rev. Lett. 55, 382 (1985)

    Article  ADS  Google Scholar 

  590. J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hieronymus, M. Kohl, H.-J. Grabka: Spectroscopy of Rydberg atoms at n ≃ 500: Observation of quasi-Landau resonances in low magnetic fields. Phys. Rev. Lett. 59, 2947 (1987)

    Article  ADS  Google Scholar 

  591. B.P. Stoicheff, E. Wineberger: Doppler-free two-photon absorption spectrum of rubidium. Can. J. Phys. 57, 2143 (1979)

    Article  ADS  Google Scholar 

  592. C.-J. Lorenzen, K. Niemax, L.R. Pendrill: Precise measurements of 39K nS and nD energy levels with an evacuated wavemeter. Opt. Commun. 39, 370 (1981)

    Article  ADS  Google Scholar 

  593. K.-H. Weber, C.J. Sansonetti: Accurate energies of nS, nP, nF and nG levels of neutral cesium. Phys. Rev. A 35, 4650 (1987)

    Article  ADS  Google Scholar 

  594. M.J. Seaton: Quantum defect theory. Rep. Prog. Phys. 46, 167 (1983)

    Article  ADS  Google Scholar 

  595. E. Matthias, H. Rinneberg, R. Beigang, A. Timmermann, J. Neukammer, K. Lücke: ‘Hyperfine structure and isotope shifts in alkaline earth atoms.’ In: Atomic Physics 8, ed. by I. Lindgren, A. Rosén, S. Svanberg (Plenum, New York 1983) p. 543

    Google Scholar 

  596. H. Rinneberg: ‘Rydberg series of two-electron systems studied by hyperfine interactions.’ In: Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 157

    Google Scholar 

  597. M. Aymar: Rydberg series of alkaline-earth atoms Ca through Ba. The interplay of laser spectroscopy and multi-channel quantum defect theory. Phys. Rep. 110, 163 (1984)

    Article  ADS  Google Scholar 

  598. W. Hogervorst: Laser spectroscopy of Rydberg states of two-electron atoms. Comments At. Mol. Phys. 13, 69 (1983)

    Google Scholar 

  599. C. Wieman, T.W. Hänsch: Precision measurement of the 1S Lamb shift and the 1S-2S isotope shift of hydrogen and deuterium. Phys. Rev. A 22, 192 (1980)

    Article  ADS  Google Scholar 

  600. E.A. Hildum, U. Boesl, D.H. McIntyre, R.G. Beausoleil, T.W. Hänsch: Measurements of the 1s — 2s frequency in atomic hydrogen. Phys. Rev. Lett. 56, 576 (1986)

    Article  ADS  Google Scholar 

  601. R.G. Beausoleil, D.H. McIntyre, C.J. Foot, E.A. Hildum, B. Couillaud, T.W. Hänsch: Continous wave measurement of the 1S Lamb shift in atomic hydrogen. Phys. Rev. A 35, 4878 (1987); ibid. A 39, 4591 (1989

    Article  ADS  Google Scholar 

  602. C. Zimmermann, R. Kallenback, T.W. Hänsch: High-resolution spectroscopy of the hydrogen 1s — 2s transition in an atomic beam. Phys. Rev. Lett. 65, 571 (1990)

    Article  ADS  Google Scholar 

  603. T.W. Hänsch, R.G. Beausoleil, B. Couillaud, C. Foot, E.A. Hildum, D.H. McIntyre: High resolution laser spectroscopy of atomic hydrogen. In: [9.30] p. 2

    Google Scholar 

  604. F. Schmidt-Kaler, D. Leibfried, S. Seel, C. Zimmermann, W. König, M. Weitz, T.W. Hänsch: High-resolution spectroscopy of the hydrogen 1s — 2s transition in an atomic hydrogen and deuterium. Phys. Rev. A 51, 2789 (1995)

    Article  ADS  Google Scholar 

  605. A. Huber, B. Gross, M. Weitz, T.W. Hänsch: High-resolution spectroscopy of the 1S-2S transition in atomic hydrogen. Phys. Rev. A 59, 1844 (1999)

    Article  ADS  Google Scholar 

  606. M. Niering, R. Holzwarth, R. Reichert, P. Pokasov, Th. Udem, M. Weitz, T.W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon: Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)

    Article  ADS  Google Scholar 

  607. J. Cariou, P. Luc: Atlas du Spectre d’Absorption de la Molécule de Tellure (Laboratoire Aime’ Cotton, CNRS II, Orsay 1980)

    Google Scholar 

  608. S. Gersternkorn, P. Luc: Atlas du Spectre d’Absorption de la Molecule d’Iode 14 800-20 000 cm-1 (Editions du CNRS, Paris 1978)

    Google Scholar 

  609. C.J. Foot, B. Couillaud, R.G. Beausoleil, T.W. Hänsch: Continous twophoton spectroscopy of hydrogen 1s — 2s. Phys. Rev. Lett. 54, 1913 (1985)

    Article  ADS  Google Scholar 

  610. M.G. Boshier, P.E.G. Baird, C.J. Foot, E.A. Hinds, M.D. Plimmer, D.N. Stacey, J.B. Swan, D.A. Tate, D.M. Warrington, G.K. Woodgate: Precision cw laser spectroscopy of hydrogen and deuterium. In: [9.30] p. 18

    Google Scholar 

  611. Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, T.W. Hänsch: Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646 (1997)

    Article  ADS  Google Scholar 

  612. B. de Beauvoir, F. Nez, L. Juilien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clarion, J.J. Zondy: Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant. Phys. Rev. Lett. 78, 440 (1997)

    Article  ADS  Google Scholar 

  613. P. Zhao, W. Lichten, H.P. Layer, J.C. Bergquist: Absolute wavelength measurements and fundamental atomic physics. In: [9.30] p. 12

    Google Scholar 

  614. S. Bourzeix, B. de Beauvoir, F. Nez, M.D. Plimmer, F. de Tomasi, L. Julien, F. Biraben: High resolution spectroscopy of the hydrogen atom: Determination of the 1S Lamb shift. Phys. Rev. Lett. 76, 384 (1996)

    Article  ADS  Google Scholar 

  615. M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu: Limit of opticalfrequency comb generation due to material dispersion. IEEE J. Quantum Electron. QE-31, 2120 (1995)

    Article  ADS  Google Scholar 

  616. S.A. Diddams, L.S. Ma, J. Ye, J.L. Hall: Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24, 1747 (1999)

    Article  ADS  Google Scholar 

  617. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch: Absolute optical frequency measurement of the Cs D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568 (1999)

    Article  ADS  Google Scholar 

  618. R. Holzwarth, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.St.J. Russel: Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000)

    Article  ADS  Google Scholar 

  619. Th. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg: Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996 (2001)

    Article  ADS  Google Scholar 

  620. S. Bize, S.A. Diddams, U. Tanaka, C.E. Tanner, W.H. Oskay, R.E. Drullinger, T.E. Parker, T.P. Heavner, S.R. Jefferts, L. Hollberg, W.H. Itano, J.C. Bergquist: Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett. 90, 150 802 (2003)

    Article  Google Scholar 

  621. T.W. Hän sch: Laser frequency combs and ultraprecise spectroscopy. In P. Hannaford, A. Siderov, H. Bachor, K. Baldwin (eds.): Laser Spectroscopy 16 (World Scientific, Singapore 2004)

    Google Scholar 

  622. M.M. Salour, C. Cohen-Tannoudji: Observation of Ramsey’s interference fringes in the profile of Doppler-free two-photon resonances. Phys. Rev. Lett. 38, 757 (1977)

    Article  ADS  Google Scholar 

  623. R. Teets, J. Eckstein, T.W. Hänsch: Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760 (1977)

    Article  ADS  Google Scholar 

  624. M. Bellini, A. Bartoli, T.W. Hänsch: Two-photon Fourier spectroscopy with femtosecond light pulses. Opt. Lett. 22, 540 (1997)

    Article  ADS  Google Scholar 

  625. J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated absorption with spatially separated laser fields: Observation of optical ”Ramsey” fringes. Phys. Rev. Lett. 38, 159 (1977); and in [9.25] p. 142

    Article  ADS  Google Scholar 

  626. R.G. Beausoleil, T.W. Hänsch: Two-photon optical Ramsey spectroscopy of freely falling atoms. Opt. Lett. 10, 547 (1985)

    Article  ADS  Google Scholar 

  627. R.G. Beausoleil, T.W. Hänsch: Ultra-high-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661 (1986)

    Article  ADS  Google Scholar 

  628. M.A. Kasevich, E. Riis, S. Chu, R.G. DeVoe: RF spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612 (1989)

    Article  ADS  Google Scholar 

  629. B. Gross, A. Huber, M. Niering, M. Weitz, T.W. Hänsch: Optical Ramsey spectroscopy of atomic hydrogen. Europhys. Lett. 44, 186 (1998)

    Article  ADS  Google Scholar 

  630. T.W. Hänsch, A.L. Schawlow: Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  631. D. Wineland, H. Dehmelt: Proposed 1014 Δν ≪ ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III. Bull. Am. Phys. Soc. 20, 637 (1975)

    Google Scholar 

  632. V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and trapping of atoms and molecules by a resonant laser field. Opt. Commun. 19, 72 (1976)

    Article  ADS  Google Scholar 

  633. V.S. Letokhov: Laser control of atomic motion: Velocity selection, cooling and trapping. Comments At. Mol. Phys. 6, 119 (1977)

    Google Scholar 

  634. V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and capture of atoms and molecules by a resonant light field. Sov. Phys. JETP 45, 698 (1977)

    ADS  Google Scholar 

  635. V.I. Balykin, V.S. Letokhov, V.I. Mishin: Cooling of sodium atoms by resonant laser emission. JETP Lett. 29, 560 (1979)

    ADS  Google Scholar 

  636. V.I. Balykin, V.S. Letokhov, V.I. Mishin: Cooling of sodium atoms by resonant laser emission. Sov. Phys. JETP 51, 692 (1980)

    ADS  Google Scholar 

  637. S.V. Andreev, V.I. Balykin, V.S. Letokhov, V.G. Minogin: Radiative slowing and reduction of the energy spread of a beam of sodium atoms to 1.5 K in an oppositely directed laser beam. JETP Lett. 34, 442 (1982)

    ADS  Google Scholar 

  638. J. Prodan, A. Migdal, W.D. Phillips, I. So, H. Metcalf, J. Dalibard: Stopping atoms with laser light. Phys. Rev. Lett. 54, 992 (1985)

    Article  ADS  Google Scholar 

  639. W. Phillips, J. Prodan, H. Metcalf: Laser cooling and electromagnetic trapping of neutral atoms. J. Opt. Soc. Am. B 2, 1751 (1985)

    Article  ADS  Google Scholar 

  640. H. Metcalf, W.D. Phillips: Laser cooling of atomic beams: Comments. At. Mol. Phys. 16, 79 (1985)

    Google Scholar 

  641. W.D. Phillips, H. Metcalf: Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596 (1982)

    Article  ADS  Google Scholar 

  642. J.V. Prodan, W.D. Phillips, H. Metcalf: Laser production of very slow monoenergetic atomic beam. Phys. Rev. Lett. 49, 1149 (1982)

    Article  ADS  Google Scholar 

  643. W.D. Phillips, P.L. Gould, P.D. Lett: Cooling, stopping and trapping atoms. Science 239, 877 (1988)

    Article  ADS  Google Scholar 

  644. F.M. Penning: Physica 3, 873 (1936)

    Article  Google Scholar 

  645. J.R. Pierce: Theory and Design of Electron Beams (van Nostrand, New York 1949), Chap. 3

    Google Scholar 

  646. I. Bergström, C. Carlberg, R. Schuch (eds.): Trapped Charged Particles and Related Fundamental Physics. Phys. Scr. T59 (1995)

    Google Scholar 

  647. C. Carlberg et al.: SMILETRAP — A wide range high-precision mass spectrometer. IEEE Trans. Instrum. Meas. 44, 553 (1995)

    Article  Google Scholar 

  648. F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard: ‘Accurate atomic mass measurements from Penning trap comparisons of individual ions.’ In: Atomic Physics XIV, ed. by D.J. Wineland, C.E. Wieman, S.J. Smith (AIP Publ., New York 1995) p. 149

    Google Scholar 

  649. M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard: Phys. Rev. Lett. 83, 4510 (1999)

    Article  ADS  Google Scholar 

  650. G. Bollen et al.: ISOLTRAP: A Penning trap system for accurate on-line mass determinations of short-lived isotopes. Nucl. Instrum. Methods A 368, 675 (1996)

    Article  ADS  Google Scholar 

  651. W. Paul, H.P. Reinhard, U. von Zahn: Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner. Z. Physik 152, 143 (1958)

    Article  ADS  Google Scholar 

  652. W. Paul: ‘Electromagnetic traps for charged and neutral particles.’ In: Nobel Lectures in Physics 1981-1990, ed. by G. Ekspong (World Scientific, Singapore 1993), p. 601

    Google Scholar 

  653. H.G. Dehmelt: ‘Experiments with an isolated subatomic particle at rest.’ In: Nobel Lectures in Physics 1981-1990, ed. by G. Ekspong (World Scientific, Singapore 1993), p. 583

    Google Scholar 

  654. D.J. Wineland, R.E. Drullinger, F.L. Walls: Radiation pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1638 (1978)

    Article  ADS  Google Scholar 

  655. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  656. D.J. Wineland, W.M. Itano: Spectroscopy of a single Mg+ ion. Phys. Lett. A 82, 75 (1981)

    Article  ADS  Google Scholar 

  657. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137 (1980)

    Article  ADS  Google Scholar 

  658. F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther: Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987); and Phys. Blätter 44, 12 (1988); Nature 334, 309 (198

    Article  ADS  Google Scholar 

  659. E.P. Wigner: Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  660. D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney: Atomic-ion Coulomb cluster in an ion trap. Phys. Rev. Lett. 59, 2935 (1987)

    Article  ADS  Google Scholar 

  661. J. Hoffnagle, R.V. DeVoe, L. Reyna, R.G. Brewer: Order-chaos transition of two trapped ions. Phys. Rev. Lett. 61, 255 (1988)

    Article  ADS  Google Scholar 

  662. R.G. Brewer, J. Hoffnagle, R.G. DeVoe, L. Reyna, W. Henshaw: Collisioninduced two-ion chaos. Nature 344, 305 (1990)

    Article  ADS  Google Scholar 

  663. D.J. Wineland, C. Monroe, D.M. Meekhof, B.E. King, D. Leibfried, W.M. Itano, J.C. Bergquist, D. Berkeland, J.J. Bollinger, J. Miller: Coherent quantum state manipulation of trapped atomic ions. Adv. Quantum Chem. 30, 41 (1998)

    Article  ADS  Google Scholar 

  664. A. Steane: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  665. H.J. Kimble, C.J. Hood, T.W. Lynn, H. Mabuchi, D.W. Vernooy, J. Ye: The quantum internet, in [9.36] p. 80

    Google Scholar 

  666. D.A. Church: Collision measurements and excited-level lifetime measurements on ions stored in Paul, Penning and Kingdon ion traps. Phys. Rep. 228, 253 (1993)

    Article  ADS  Google Scholar 

  667. H.A. Klein: ‘Ion Traps.’ In: Experimental Methods in the Physical Sciences, Vol. 29A, ed. by F.B. Dunning, R.G. Hulet (Academic Press, San Diego 1995) p. 349

    Google Scholar 

  668. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller: Nonclassical states of motion in ion traps. Adv. At. Mol. Opt. Phys. 37, 238 (1996)

    ADS  Google Scholar 

  669. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller: ‘Nonclassical states of motion in ion traps.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 238

    Google Scholar 

  670. P.F. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761 (1997)

    Article  ADS  Google Scholar 

  671. K. Gibble, S. Chu: Future slow-atom frequency standards. Metrologia 29, 201 (1992)

    Article  ADS  Google Scholar 

  672. Ch. Monroe, J. Bollinger: Atomic physics in ion traps. Physics World (March 1997) p. 37

    Google Scholar 

  673. M. Roberts, P. Taylor, G.P. Barwood, P. Gill, H.A. Klein, W.R.C. Rowley: Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78, 1876 (1997)

    Article  ADS  Google Scholar 

  674. B.E. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist: Visible laser with subhertz linewidths. Phys. Rev. Lett. 82, 3799 (1999)

    Article  ADS  Google Scholar 

  675. H.G. Dehmelt: Proposed 1014 Δν > ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator II. Bull. Am. Phys. Soc. 20, 60 (1975)

    Google Scholar 

  676. Th. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek: Observation of quantum jumps. Phys. Rev. Lett. 57, 1696 (1986); see also Phys. Scr. T22, 129 (1988) and [9.30] p. 12

    Article  ADS  Google Scholar 

  677. J.E. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699 (1986); see also Phys. Scr. T22, 79 (1988) and [9.30] p. 11

    Article  ADS  Google Scholar 

  678. W. Nagourney, J. Sandberg, H. Dehmelt: Shelved optical electron amplifier Observation of quantum jumps. Phys. Rev. Lett. 56, 2797 (1986); see also [9.30] p. 114

    Article  ADS  Google Scholar 

  679. W. Nagourney: The mono-ion oscillator: An approach to an ideal atomic spectrometer. Comments At. Mol. Phys. 21, 321 (1988)

    Article  Google Scholar 

  680. J.C. Bergquist, F. Diedrich, W.M. Itano, D.J. Wineland: Hg+ single ion spectroscopy. In: [9.31] p. 274

    Google Scholar 

  681. B.C. Young, R.J. Rafac, J.A. Beall, F.C. Cruz, W.M. Itano, D.J. Wineland, J.C. Bergquist: Hg+ optical frequency standard: Recent progress. In: [9.36] p. 61; Physics Today 3, 37 (2001)

    Google Scholar 

  682. S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin: Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985)

    Article  ADS  Google Scholar 

  683. P.D. Lett, R.N. Walls, Ch.I. Westbrook, W.D. Phillips, P.L. Gould, H.J. Metcalf: Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169 (1988)

    Article  ADS  Google Scholar 

  684. J. Dalibard, C. Cohen-Tannoudji: Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1986)

    Article  ADS  Google Scholar 

  685. J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  686. C. Cohen-Tannoudji: Thesis (Paris 1962); Ann. Phys. 7, 423 and 469 (1962)

    Google Scholar 

  687. C. Cohen-Tannoudji: in Cargese Lectures in Physics, ed. by Levy (Gordon & Breach, 1968)

    Google Scholar 

  688. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions — Basic Processes and Applications, Chap. VI (Wiley, New York 1992)

    Google Scholar 

  689. P.J. Ungar, D.S. Weiss, E. Riis, S. Chu: Optical molasses and multilevel atoms: Theory. J. Opt. Soc. Am. 6, 2058 (1989)

    Article  ADS  Google Scholar 

  690. A. Ashkin: Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729 (1978)

    Article  ADS  Google Scholar 

  691. S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable: Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986)

    Article  ADS  Google Scholar 

  692. V.S. Letokhov: Narrowing of the Doppler width in a standing light wave. JETP Lett. 7, 272 (1968)

    ADS  Google Scholar 

  693. K.-J. Kugler, W. Paul, U. Trinks: A magnetic storage ring for neutrons. Phys. Lett. B 72, 422 (1978)

    Article  ADS  Google Scholar 

  694. D.E. Pritchard: Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  695. A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergemann, H.J. Metcalf: First observation of magnetically trapped neutral atoms. Phys. Rev. Lett. 54, 2596 (1985)

    Article  ADS  Google Scholar 

  696. E.L. Raab, M.G. Prentiss, A.E. Cable, S. Chu, D.E. Pritchard: Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987)

    Article  ADS  Google Scholar 

  697. G. Alzetta, A. Gozzini, L. Moi, G. Orriols: Nuovo Cimento B 36, 5 (1976)

    Article  ADS  Google Scholar 

  698. E. Arimondo, G. Orriols: Lett. Nuovo Cimento 17, 333 (1976)

    Google Scholar 

  699. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji: Laser cooling below the one-photon recoil energy by velocityselective coherent population trapping. Phys. Rev. Lett. 61, 826 (1988)

    Article  ADS  Google Scholar 

  700. J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, C. Cohen-Tannoudji: Two-dimensional subrecoil laser cooling. Phys. Rev. Lett. 73, 1915 (1994)

    Article  ADS  Google Scholar 

  701. J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, C. Cohen-Tannoudji: Three-dimensional laser cooling of helium beyond the singlephoton recoil limit. Phys. Rev. Lett. 75, 4194 (1995)

    Article  ADS  Google Scholar 

  702. M. Kasevich, S. Chu: Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741 (1992)

    Article  ADS  Google Scholar 

  703. N. Davidson, H.J. Lee, M. Kasevich, S. Chu: Raman cooling of atoms in two and three dimensions. Phys. Rev. Lett. 72, 3158 (1994)

    Article  ADS  Google Scholar 

  704. H.J. Lee, C.S. Adams, M. Kasevich, S. Chu: Raman cooling of atoms in an optical dipole trap. Phys. Rev. Lett. 76, 2658 (1996)

    Article  ADS  Google Scholar 

  705. A. Bárány, A. Kerek, M. Larsson, S. Mannervik, L.-O. Norlin (eds.): Workshop and symposium on the physics of low-energy stored and trapped particles. Phys. Scr. T22, 1 (1988)

    Google Scholar 

  706. P. Meystre, S. Stenholm (eds.): The mechanical effects of light. J. Opt. Soc Am. B 2, 1706–1860 (1985) (special issue)

    Google Scholar 

  707. S. Stenholm: Light forces put a handle on the atom: To cool and trap atoms by laser light. Contemp. Phys. 29, 105 (1988)

    Article  ADS  Google Scholar 

  708. V.G. Minogin, V.S. Letokhov: Laser Light Pressure on Atoms (Harwood, London 1987)

    Google Scholar 

  709. W.D. Phillips, H.J. Metcalf: Cooling and trapping of atoms. Sci. Am. 256(3), 36 (1987)

    Google Scholar 

  710. P.L. Gould, P.D. Lett, W.D. Phillips: New measurements with optical molasses. In: [9.30] p. 64

    Google Scholar 

  711. D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger: Trapped Ions and Laser Cooling, NBS Technical Note 1086 (NBS, Washington, DC 1985)

    Google Scholar 

  712. D.J. Wineland, W.M. Itano, R.S. VanDyck Jr.: ‘High-resolution spectroscopy of stored ions.’ In: Advances in Atomic and Molecular Physics, Vol. 19, ed. by O.R. Bates, B. Bederson (Academic Press, New York 1983)

    Google Scholar 

  713. D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.D. Prestige: ‘Spectroscopy of stored ions.’ In: Atomic Physics 9, ed. by R.S. Van Dyck Jr., E.N. Fortson (World Scientific, Singapore 1985) p. 3

    Google Scholar 

  714. S. Stenholm: The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  715. C.J. Foot: Laser cooling and trapping of atoms. Contemp. Phys. 32, 369 (1991)

    Article  ADS  Google Scholar 

  716. S. Chu: Laser trapping of neutral particles. Sci. Am. 266(2), 48 (1992)

    Google Scholar 

  717. C. Cohen-Tannoudji: Laser cooling and trapping of neutral atoms: Theory. Phys. Rep. 219, 153 (1992)

    Article  ADS  Google Scholar 

  718. M. Metcalf, P. van der Straten: Cooling and trapping of neutral atoms. Phys. Rep. 244, 203 (1994)

    Article  ADS  Google Scholar 

  719. H. Walther: Atoms in cavities and traps. Adv. At. Mol. Opt. Phys. 32, 379 (1994)

    Article  ADS  Google Scholar 

  720. N.R. Newbury, C. Wieman: Resource Letter TNA-1: Trapping of neutral atoms. Am. J. Phys. 64, 18 (1996)

    Article  ADS  Google Scholar 

  721. E. Arimondo: ‘Coherent population trapping in laser spectroscopy.’ In: Progress in Optics XXXV, ed. by E. Wolf (Elsevier, Amsterdam 1996) p.259

    Google Scholar 

  722. A. Ashkin: Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853 (1997)

    Article  ADS  Google Scholar 

  723. M. Metcalf, P. van der Straten: Laser Cooling and Trapping (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  724. V.I. Balykin, V.S. Letokhov, Yu.B. Ovchinnikov, A.I. Sidorov: Focusing of an atomic beam and imaging of atomic sources by means of a laser lens based on resonance-radiation pressure. J. Mod. Opt. 35, 17 (1988)

    Article  ADS  Google Scholar 

  725. V.I. Balykin, V.S. Letokhov, V.G. Minogin: Laser control of the motion of neutral atoms and optical atomic traps. Phys. Scr. T22, 119 (1988)

    Article  ADS  Google Scholar 

  726. I. Balykin, V.S. Letokhov: Laser optics on neutral atomic beams. Phys. Today (April 1989) p. 23

    Google Scholar 

  727. K. Cloppenburg, G. Hennig, A. Mihm, H. Wallis, W. Ertmer: Optical elements for manipulating atoms. In: [9.30] p. 87

    Google Scholar 

  728. C.S. Adams: Atomic optics. Contemp. Phys. 35, 1 (1994)

    Article  ADS  Google Scholar 

  729. C.S. Adams, M. Sigel, J. Mlynek: Atom optics. Phys. Rep. 240, 143 (1994)

    Article  ADS  Google Scholar 

  730. K. Sengslock, W. Ertmer: Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)

    Article  ADS  Google Scholar 

  731. V.V. Balykin: ‘Atom waveguides.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 41, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 182

    Google Scholar 

  732. P.E. Moskowitz, P.L. Gould, S.R. Atlas, D.E. Pritchard: Diffraction of an atomic beam by standing-wave radiation. Phys. Rev. Lett. 51, 370 (1983)

    Article  ADS  Google Scholar 

  733. P.L. Gould, G.A. Ruff, D.E. Pritchard: Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect. Phys. Rev. Lett. 59, 827 (1986)

    Article  ADS  Google Scholar 

  734. O. Carnal, J. Mlynek: Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 66, 2689 (1991)

    Article  ADS  Google Scholar 

  735. D.K. Keith, C.E. Ekstrom, Q.A. Turchette, D.E. Pritchard: An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)

    Article  ADS  Google Scholar 

  736. F. Riehle, Th. Kisteers, A. White, J. Helmecke, Ch.J. Bordé: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177 (1991)

    Article  ADS  Google Scholar 

  737. M. Kasevich, S. Chu: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  738. C.S. Adams, O. Carnal, J. Mlynek: Atom interferometry. Adv. At. Mol. Opt. Phys. 34, 1 (1994)

    Article  ADS  Google Scholar 

  739. P. Berman (ed.): Atom Interferometry (Academic Press, New York 1997)

    Google Scholar 

  740. I. Percival: Atom interferometry, spacetime and reality. Physics World (March 1997)

    Google Scholar 

  741. T.L. Gustavson, P. Broyer, M.A. Kasevich: Precision rotation measurements with an atomic interferometer gyroscope. Phys. Rev. Lett. 78, 2046 (1997)

    Article  ADS  Google Scholar 

  742. A. Peters, K.Y. Chung, S. Chu: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  743. M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger: Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  744. J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, F. Shimizu: Manipulation of an atomic beam by a computer-generated hologram. Nature 380, 691 (1996)

    Article  ADS  Google Scholar 

  745. M. Morinaga, M. Yasuda, T. Kishimoto, F. Shimizu: Holographic manipulation of a cold atomic beam. Phys. Rev. Lett. 77, 802 (1996)

    Article  ADS  Google Scholar 

  746. F. Shimizu, J. Fujita, S. Mitake, T. Kishimoto: Holography with cold atoms. In: [9.36] p. 227

    Google Scholar 

  747. C.I. Westbrook, R.N. Watts, C.E. Tanner, S.L. Rolston, W.D. Phillips, P.D. Lett, P.L. Gould: Localization of atoms in a three-dimensional standing wave. Phys. Rev. Lett. 65, 33 (1990)

    Article  ADS  Google Scholar 

  748. P.S. Jessen, C. Gerz, P.D. Lett, W.D. Phillips, S.L. Rolston, R.J.C. Spreeuw, C.I. Westbrook: Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett. 69, 49 (1992)

    Article  ADS  Google Scholar 

  749. A. Hemmerich, T.W. Hänsch: Two-dimensional atomic crystal bound by light. Phys. Rev. Lett. 70, 410 (1993)

    Article  ADS  Google Scholar 

  750. D. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon: Quantized motion of cold cesium atoms in two-and three-dimensional optical potentials. Phys. Rev. Lett. 70, 2249 (1993)

    Article  ADS  Google Scholar 

  751. A. Kastberg, W.D. Phillips, W.S.L. Rolston, R.J.C. Spreeuw, P.S. Jessen: Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542 (1995)

    Article  ADS  Google Scholar 

  752. P.L. Gould, P.D. Lett, P.S. Julienne, W.D. Phillips, H.R. Thorsheim, J. Weiner: Observation of associative ionization of ultracold laser-trapped sodium atoms. Phys. Rev. Lett. 60, 788 (1988)

    Article  ADS  Google Scholar 

  753. P.D. Lett, P.S. Jessen, W.D. Phillips, S.L. Rolston, C.I. Westbrook, P.L. Gould: Laser modification of ultracold collisions: Experiment. Phys. Rev. Lett. 67, 2139 (1991)

    Article  ADS  Google Scholar 

  754. J. Weiner: Advances in ultracold collisions: Experimentation and theory. Adv. At. Mol. Opt. Phys. 35, 45 (1995)

    Article  ADS  Google Scholar 

  755. J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle: Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148 (1998)

    Article  ADS  Google Scholar 

  756. H.L. Bethlem, G. Berden, G. Meijer: Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558 (1999)

    Article  ADS  Google Scholar 

  757. S.N. Atutov, S.P. Podjachev, A.M. Shalagin: Diffusion pulling of Na vapor into the light beam. Opt. Commun. 57, 236 (1986)

    Article  ADS  Google Scholar 

  758. Kh. Gel’mukhanov, A.M. Shalagin: Sov. Phys.-JETP 51, 839 (1980)

    ADS  Google Scholar 

  759. E.R. Eliel: Light-induced drift. Adv. At. Mol. Opt. Phys. 31, 199 (1993)

    Google Scholar 

  760. H.G.C. Werij, J.P. Woerdman, J.J.M. Beenakker, I. Kuscer: Demonstration of a semipermeable optical piston. Phys. Rev. Lett. 52, 2237 (1984)

    Article  ADS  Google Scholar 

  761. G. Nienhuis: Theory of light-induced drift and the optical piston. Phys. Rev. A 31, 1636 (1985)

    Article  ADS  Google Scholar 

  762. S.N. Bose: Z. Phys. 26, 178 (1924)

    Article  ADS  MATH  Google Scholar 

  763. A. Einstein: Sitzungsber. Preuss. Akad. Wiss. 1924, 261 (1924); ibid. 1925, 3 (1925

    Google Scholar 

  764. H.F. Hess: Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476 (1986)

    Article  ADS  Google Scholar 

  765. H.F. Hess, G.P. Kochanski, J.M. Doyle, N. Masuhara, D. Kleppner, T.J. Greytak: Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett. 59, 672 (1987)

    Article  ADS  Google Scholar 

  766. N. Masuhara, J.M. Doyle, J.C. Sandberg, D. Kleppner, T.J. Greytak, H.F. Hess, G.P. Kochanski: Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935 (1988)

    Article  ADS  Google Scholar 

  767. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  768. K.B. Davies, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.N. Kurn, W. Ketterle: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  769. Physics Today (August 1995) p. 17

    Google Scholar 

  770. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle: Observation of interference between two Bose condensates. Science 275, 637 (1997)

    Article  Google Scholar 

  771. M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle: Output coupler for Bose-Einstein condensed atoms. Phys. Rev. Lett. 78, 582 (1997)

    Article  ADS  Google Scholar 

  772. I. Bloch, T.W. Hänsch, T. Esslinger: Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999)

    Article  ADS  Google Scholar 

  773. W. Hagley, L. Deng, M. Kozuma, J. Wen, M.A. Edwards, K. Helmersson, S.L. Rolston, W.D. Phillips: A well-collimated quasi-continuous atom laser. Science 283, 1706 (1999)

    Article  ADS  Google Scholar 

  774. S. Inouye, T. Pfau, S. Gupta, A.P. Chikkatur, A. Gorlitz, D.E. Pritchard, W. Ketterle: Phase-coherent amplification of atomic matter waves. Nature 402, 641 (1999)

    Article  ADS  Google Scholar 

  775. A.P. Chikkatur, Y. Shin, A.E. Leanhardt, D. Kielpinski, E. Tsikata, T.L. Gustavson, D.E. Pritchard, W. Ketterle: A continuous source of Bose-Einstein condensed atoms. Science 296, 2193–2195 (2002)

    Article  ADS  Google Scholar 

  776. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet: Evidence for Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  777. C.C. Bradley, C.A. Sackett, R.G. Hulet: Bose-Einstein condensation of lithium: Observation of a limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

    Article  ADS  Google Scholar 

  778. A. Griffin, D.W. Snoke, S. Stringari (eds.): Bose-Einstein condensation (Cambridge University Press, Cambridge 1995)

    Google Scholar 

  779. Ch. Towsend, W. Ketterle, S. Stringari: Bose-Einstein condensation. Physics World (March 1997) p. 29

    Google Scholar 

  780. W. Ketterle, M.R. Andrews, K.B. Davies, D.S. Durfee, D.M. Korn, M.-O. Mewes, N.J. van Druten: Bose-Einstein condensation of ultra-cold atomic gases. Phys. Scr. T66, 31 (1996)

    Article  ADS  Google Scholar 

  781. K. Burnett: Bose-Einstein condensation with evaporatively cooled atoms. Contemp. Phys. 37, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  782. W. Ketterle, N.J. Druten: Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  783. W. Ketterle, N.J. van Druten: ‘Evaporative cooling.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 181

    Google Scholar 

  784. E.A. Cornell, C.E. Wieman: The Bose-Einstein condensate. Sci. Am. 278(3), 26 (1998)

    Article  Google Scholar 

  785. A.S. Parkins, D.F. Walls: The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1 (1998)

    Article  ADS  Google Scholar 

  786. B.P. Anderson, M.A. Kasevich: Science 282, 1686 (1998)

    Article  ADS  Google Scholar 

  787. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  788. C. Raman, M. Köhl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle: Phys. Rev. Lett. 83, 2502 (1999)

    Article  ADS  Google Scholar 

  789. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman: Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  790. E.A. Cornell, C.E. Wieman: Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875 (2002)

    Article  ADS  Google Scholar 

  791. W. Ketterle: Nobel Lecture: When atoms behave like waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002)

    Article  ADS  Google Scholar 

  792. G. Modugno, G. Ferrari, G. Roati, R. Brecha, A. Simoni, M. Inguscio: Bose-Einstein condensation of potassium by sympathetic cooling. Science 294, 1320 (2001)

    Article  ADS  Google Scholar 

  793. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel: Bose-Einstein condensation on a microelectronic chip. Nature 413, 498 (2001)

    Article  ADS  Google Scholar 

  794. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  795. M. Greiner, O. Mandel, T.W. Hänsch and I. Bloch: Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51 (2002)

    Article  ADS  Google Scholar 

  796. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle: Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  797. E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295 (2001)

    Article  ADS  Google Scholar 

  798. E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman: Atommolecule coherence in a Bose-Einstein condensate. Nature 417, 529 (2002)

    Article  ADS  Google Scholar 

  799. K. Dieckmann, C.A. Stan, S. Gupta, Z. Hadzibabic, C. Schunck, W. Ketterle: Decay of ultracold fermionic lithium gas near a Feshbach resonance. Phys. Rev. Lett. 89, 203 201 (2002)

    Article  Google Scholar 

  800. A.E. Leanhardt, A.P. Chikkatur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle, D.E. Pritchard: Propagation of Bose-Einstein condensates in a magnetic waveguide. Phys. Rev. Lett. 89, 040401 (2002)

    Article  ADS  Google Scholar 

  801. T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle: Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401 (2002)

    Article  ADS  Google Scholar 

  802. J.R. Anglin, W. Ketterle: Bose-Einstein condensation of atomic gases. Nature 416, 211 (2002)

    Article  ADS  Google Scholar 

  803. P. Engels, I. Coddington, P.C. Haljan, V. Schweikhard, E.A. Cornell: Observation of long-lived vortex aggregates in rapidly rotating Bose-Einstein condensates. Phys. Rev. Lett. 90, 170 405/1–4 (2003)

    Article  Google Scholar 

  804. A.E. Leanhardt, Y. Shin, A.P. Chikkatur, D. Kielpinski, W. Ketterle, D.E. Pritchard: Bose-Einstein condensates near a microfabricated surface. Phys. Rev. Lett. 90, 100 404 (2003)

    Google Scholar 

  805. L. Deng, E.W. Hagley, J. Wen, M. Trippenbach, Y. Band, P.S. Julienne, J.E. Simsarian, K. Helmersson, S.L. Rolston, W.D. Phillips: Four-wave mixing with matter waves. Nature 398, 218 (1999)

    Article  ADS  Google Scholar 

  806. S.L. Rolston: Linear and non-linear atom optics with Bose-Einstein Condensates. In: [9.36] p. 120

    Google Scholar 

  807. W.C. Stwalley, L.H. Nosanow: Possible ”new” quantum systems. Phys. Rev. Lett. 36, 910 (1976)

    Article  ADS  Google Scholar 

  808. I.F. Silvera, J.T.M. Walraven: Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett. 44, 164 (1980)

    Article  ADS  Google Scholar 

  809. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, D. Kleppner, T.J. Greytak: Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811 (1999)

    Article  ADS  Google Scholar 

  810. B. DeMarco, D.S. Jin: Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703 (1999)

    Article  Google Scholar 

  811. G. Modugno. G. Roati, F. Riboli, F. Ferlaino, R. Brecha, M. Inguscio: Collapse of a degenerate Fermi gas, Science 297, 2240 (2002)

    Article  ADS  Google Scholar 

  812. S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle: Rf spectroscopy of ultracold fermions. Science 300, 1723 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svanberg, S. (2004). Laser Spectroscopy. In: Atomic and Molecular Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18520-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18520-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20382-7

  • Online ISBN: 978-3-642-18520-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics