Skip to main content

Radio-Frequency Spectroscopy

  • Chapter
Book cover Atomic and Molecular Spectroscopy

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1848 Accesses

Abstract

Whereas the resolution in optical investigations of free atoms is limited by different broadening mechanisms in the light source and the spectral equipment, resonance methods yield a linewidth which is limited essentially only by the Heisenberg uncertainty relation. For investigations of ground- and meta-stable states two methods, Optical Pumping (OP) and Atomic-Beam Magnetic Resonance (ABMR) can be utilized. In the second method, a spatial deflection of free atoms is used, while the first method is an optical resonance method. For studies of short-lived excited states two additional optical precision methods are available: Optical Double Resonance (ODR) and Level Crossing (LC) Spectroscopy. Resonance techniques can also be used for investigating liquids and solids. Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR) will be discussed. As the radio-frequency techniques make use of magnetic resonance, a general description of this phenomenon will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ramsey: Molecular Beams (Clarendon, Oxford 1956; Paperback 1985)

    Google Scholar 

  2. J.M. Pendlebury, K.F. Smith: Molecular beams. Contemp. Phys. 28, 3 (1987)

    Article  ADS  Google Scholar 

  3. J.F. O’Hanlon: A User Guide to Vacuum Technology, 2nd edn. (Wiley, New York 1989)

    Google Scholar 

  4. J.M. Lafferty: Foundations of Vacuum Science and Technology (Wiley, New York 1998)

    Google Scholar 

  5. A.N. Nesmeyanov: Vapor Pressure of the Elements (Academic Press, New York 1963)

    Google Scholar 

  6. R.E. Honig, D.A. Kramer: RCA Rev. 30, 285 (1969)

    Google Scholar 

  7. O. Stern, W. Gerlach: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Das magnetische Moment des Silberatoms. Z. Physik 9, 349, 353 (1922)

    Google Scholar 

  8. I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch: A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938)

    Article  ADS  Google Scholar 

  9. N.F. Ramsey: A new molecular beamresonance method. Phys. Rev. 76, 996 (1949); A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695 (1950); Phase shifts in the molecular beam method of separated oscillating fields. Phys. Rev. 84, 506 (195

    Article  ADS  Google Scholar 

  10. M.G.H. Gustavsson, A.-M. Mårtensson-Pendrill: Four decades of hyperfine anomaly. Adv. Quantum Chem. 30, 343 (1998)

    Article  ADS  Google Scholar 

  11. C. Ekström, I. Lindgren: ‘Atomic beam experiments at the ISOLDE facility at CERN.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 201

    Google Scholar 

  12. C. Ekström: Spins and moments of nuclei far from stability determined by on-line atomic-beam techniques. Adv. Quantum Chem. 30, 361 (1998)

    Article  ADS  Google Scholar 

  13. W.J. Childs: Case Studies. Atomic Phys. 3, 215 (1973)

    Google Scholar 

  14. S. Büttgenbach, G. Meisel, S. Penselin, K.H. Schneider: A new method for the production of atomic beams of highly refractory elements and first atomic beam magnetic resonances in Ta181. Z. Physik 230, 329 (1970)

    Article  ADS  Google Scholar 

  15. H. Rubinsztein, I. Lindgren, L. Lindström, H. Riedl, A. Rosén: Atomic beam measurements on refractory elements. Nucl. Instrum. Methods 119, 269 (1974)

    Article  ADS  Google Scholar 

  16. U. Brinkmann, J. Goschler, A. Steudel, H. Walther: Experimente mit Erdalkaliatomen in Metastabilen Zuständen. Z. Physik 228, 427 (1969)

    Article  ADS  Google Scholar 

  17. S. Garpman, G. Lidö, S. Rydberg, S. Svanberg: Lifetimes of some highly excited levels in the Pb-I spectrum measured by the Hanle method. Z. Physik 241, 217 (1971)

    Article  ADS  Google Scholar 

  18. S. Penselin: ‘Recent developments and results of the atomic beam magnetic resonance method.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 463

    Google Scholar 

  19. W.J. Childs: Overview of laser-radiofrequency double-resonance studies of atomic, molecular and ionic beams. Phys. Rep. 211, 113 (1992)

    Article  ADS  Google Scholar 

  20. A. Kastler: Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantification spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J. Phys. Radium 11, 255 (1950); Méthodes optiques d’étude de la résonance magnétique. Physica 17, 191 (1951); Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 47, 460 (195

    Article  Google Scholar 

  21. H.J. Besch, U. Köpf, E.W. Otten: Optical pumping of short-lived beta emitters. Phys. Lett. B 25, 120 (1967)

    Article  ADS  Google Scholar 

  22. E.W. Otten: ‘Hyperfine and isotope shift measurements far from stability by optical pumping.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 239

    Google Scholar 

  23. J. Bonn, G. Huber, H.J. Kluge, U. Köpf, L. Kugler, E.W. Otten, J. Rodrigues: ‘Orientation of short-lived mercury isotopes by means of optical pumping detected by β and γ radiation.’ In: Atomic Physics 3, ed. by S.J. Smith, G.K. Walters (Plenum, New York 1973) p. 471

    Google Scholar 

  24. R. Bernheim: Optical Pumping (Benjamin, New York 1965)

    Google Scholar 

  25. W. Happer: Optical pumping. Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  26. G.W. Series: Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)

    Google Scholar 

  27. M. Arditi, T.R. Carver: Optical detection of zero-field hyperfine structure in Na23. Phys. Rev. 109, 1012 (1958); Frequency shift of the zero-field hyperfine splitting of Cs133 produced by various buffer gases. Phys. Rev. 112, 449 (1958

    Article  ADS  Google Scholar 

  28. H.M. Goldenberg, D. Kleppner, N.F. Ramsey: Atomic hydrogen maser. Phys. Rev. Lett. 5, 361 (1960)

    Article  ADS  Google Scholar 

  29. D. Kleppner, H.M. Goldenberg, N.F. Ramsey: Properties of the hydrogen maser. Appl. Opt. 1, 55 (1962)

    Article  ADS  Google Scholar 

  30. S.B. Crampton, D. Kleppner, N.F. Ramsey: Hyperfine structure of ground state atomic hydrogen. Phys. Rev. Lett. 11, 338 (1963)

    Article  ADS  Google Scholar 

  31. P. Karpaschoff: Frequency and Time (Academic Press, London 1978)

    Google Scholar 

  32. H. Hellwig: Atomic frequency standards. Proc. IEEE 63, 212 (1974)

    Article  ADS  Google Scholar 

  33. J. Vanier, C. Audoin: The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol 1989)

    Google Scholar 

  34. F.L. Walls: Frequency standards based on atomic hydrogen. Proc. IEEE 74, 142 (1986)

    Article  ADS  Google Scholar 

  35. D.J. Wineland: Frequency standards based on stored ions. Proc. IEEE 74, 147 (1986)

    Article  ADS  Google Scholar 

  36. Time and Frequency. Special issue of Proc. IEEE 79(7) (1991)

    Google Scholar 

  37. W.M. Itano, N.F. Ramsey: Accurate measurement of time. Sci. Am. 269(1), 56 (1993)

    Article  ADS  Google Scholar 

  38. F.G. Mayor: The Quantum Beat — The Physical Principles of Atomic Clocks (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  39. P.F. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761 (1997)

    Article  ADS  Google Scholar 

  40. Th.A. Herring: The global positioning system. Sci. Am. 274(2) 32 (1996)

    Article  MathSciNet  Google Scholar 

  41. B. Hofmann-Wellenhof, H. Lichtenegger: GPS Theory and Practice, 4th edn. (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  42. G. Elgered, J.M. Johansson, B.O. Rönnäng, J.L. Davis: Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophys. Res. Lett. 24, 2663 (1997)

    Article  ADS  Google Scholar 

  43. J.L. Davis, M.L. Cosmo, G. Elgered: ‘Using the Global Positioning System to study the atmosphere of the earth: Overview and prospects.’ In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, IAG Symposia, Vol. 115, ed. by G. Beutler, G.W. Hein, W.G. Melbourne, G. Seeber (Springer, Berlin 1996) p. 233

    Google Scholar 

  44. A. Kastler, J. Brossel: La détection de la résonance magnétique des niveaux excités: L’effet de dépolarisation des radiations de résonance optique et de fluorescence. Comp. Rend. 229, 1213 (1949)

    Google Scholar 

  45. J. Brossel, F. Bitter: A new “double resonance” method for investigating atomic energy levels. Application to Hg 3P1. Phys. Rev. 86, 308 (1952)

    Article  ADS  Google Scholar 

  46. G. Belin, I. Lindgren, I. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)

    Article  ADS  Google Scholar 

  47. W. Hanle: Uber magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Physik 30, 93 (1924); Erg. Ex. Naturwiss. 4, 214 (1925

    Article  ADS  Google Scholar 

  48. F.D. Colgrove, P.A. Franken, R.R. Lewis, R.H. Sands: Novel method of spectroscopy with applications to precision fine structure measurements. Phys. Rev. Lett. 3, 420 (1959)

    Article  ADS  Google Scholar 

  49. G. Breit: Quantum theory of dispersion (continued). Pts. VI and VII. Rev. Mod. Phys. 5, 91 (1933)

    Article  ADS  MATH  Google Scholar 

  50. P. Franken: Interference effects in the resonance fluorescence of “crossed” excited states. Phys. Rev. 121, 508 (1961)

    Article  ADS  Google Scholar 

  51. T.G. Eck, L.L. Foldy, H. Wiedner: Observation of “anticrossings” in optical resonance fluorescence. Phys. Rev. Lett. 10, 239 (1963)

    Article  ADS  Google Scholar 

  52. H. Wiedner, T.G. Eck: “Anticrossing” signals in resonance fluorescence. Phys. Rev. 153, 103 (1967)

    Article  ADS  Google Scholar 

  53. H.J. Beyer, H. Kleinpoppen: ‘Anticrossing spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 607

    Google Scholar 

  54. G. Belin, S. Svanberg: Electronic g J factors, natural lifetimes and electric quadrupole interaction in the np 2 P 3/2 series of the Rb I spectrum. Phys. Scr. 4, 269 (1971)

    Article  ADS  Google Scholar 

  55. R. Gupta, S. Chang, C. Tai, W. Happer: Cascade radio-frequency spectroscopy of excited S and D states of rubidium; anomalous D-state hyperfine structure. Phys. Rev. Lett. 29, 695 (1972)

    Article  ADS  Google Scholar 

  56. R. Gupta, W. Happer, L. Lam, S. Svanberg: Hyperfine structure measurements of excited S states of the stable isotopes of potassium, rubidium and cesium by cascade radio-frequency spectroscopy. Phys. Rev. A 8, 2792 (1973)

    Article  ADS  Google Scholar 

  57. M.E. Rose, R.L. Carovillano: Coherence effects in resonance fluorescence. Phys. Rev. 122, 1185 (1961)

    Article  ADS  Google Scholar 

  58. G. zu Putlitz: ‘Double resonance and level-crossing spectroscopy.’ In: Atomic Physics, ed. by V.W. Hughes, B. Bederson, V.W. Cohen, F.M.J. Pichanick (Plenum, New York 1969)

    Google Scholar 

  59. G. Moruzzi, F. Strumia (eds.): The Hanle Effect and Level-Crossing Spectroscopy (Plenum, New York 1991)

    Google Scholar 

  60. B. Budick: In: Advances in Atomic and Molecular Physics, ed. by R.D. Bates, I. Esterman (Academic Press, New York 1967)

    Google Scholar 

  61. W. Happer, R. Gupta: ‘Perturbed fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 391

    Google Scholar 

  62. E. Arimondo, M. Inguscio, P. Violino: Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31 (1977)

    Article  ADS  Google Scholar 

  63. P.R. Johnson, R. Pearson Jr.: Methods in Experimental Physics, Vol. 13, (Academic Press, New York 1976) p. 102

    Google Scholar 

  64. C.P. Slichter: Principles of Magnetic Resonance, 3rd edn. Springer Ser. Solid-State Sci., Vol. 1 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  65. A.U. Rahman, M. Iqbal: Solving Problems with NMR (Academic Press, London 1995)

    Google Scholar 

  66. D.A. Skoog, D.M. West: Principles of Instrumental Analysis (Saunders, Philadelphia 1980)

    Google Scholar 

  67. R. Brewer, E.L. Hahn: Atomic memory. Sci. Am. 251(6), 42 (1984)

    Article  ADS  Google Scholar 

  68. H. Gunther: NMR Spectroscopy — An Introduction (Wiley, Chichester 1985)

    Google Scholar 

  69. D.A.R. Williams: Nuclear Magnetic Resonance Spectroscopy (Wiley, Chichester 1986)

    Google Scholar 

  70. W. Kemp: NMR in Chemistry (McMillan, London 1986)

    Google Scholar 

  71. I.L. Pykett: NMR imaging in medicine. Sci. Am. 246(5), 54 (1982)

    Article  Google Scholar 

  72. J. Mattson, M. Simon: The Story of MRI (Bar-Ilan University Press, Jericho, NY 1996)

    Google Scholar 

  73. D.R. Bailes, D.J. Bryant: NMR imaging. Contemp. Phys. 25, 441 (1984)

    Article  ADS  Google Scholar 

  74. R.S. MacKay: Medical Images and Displays: Comparison of Nuclear Magnetic Resonance. Ultrasound, X-Rays and Other Modalities (Wiley, New York 1984)

    Google Scholar 

  75. R.A. Robb: Three-Dimensional Biomedical Imaging — Principles and Practice (VCH, New York 1994)

    Google Scholar 

  76. C.N. Guy: The second revolution in medical imaging. Contemp. Phys. 37, 15 (1996)

    Article  ADS  Google Scholar 

  77. R. Kimmich: NMR-Tomography, Diffusometry, Relaxometry (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  78. M.S. Albert, G. Driehuys, W. Happer, B. Saam, C.S. Springer Jr., A. Wishnia: Biological magnetic resonanace imaging using laser-polarized Xe-129. Nature 370, 199 (1994)

    Article  ADS  Google Scholar 

  79. W. Happer: ‘Medical NMR sensing with laser polarized 3He and 129Xe.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann et al. (Springer, Berlin, Heidelberg 1997) p. 121

    Google Scholar 

  80. M. Ebert, T. Grossmann, W. Heil, E.W. Otten, R. Surkau, M. Leduc, P. Bachert, M.V. Knopp, L.R. Schad, M. Thelen: MRI-imaging with hyperpolarized 3He. Lancet 347, 9011 (1996)

    Article  Google Scholar 

  81. C.G. Aminoff, C. Larat, M. Leduc, B. Viana, D. Vivien: A powerful infrared laser for optical pumping of He. J. Lumin. 50, 21 (1991)

    Article  Google Scholar 

  82. F.D. Colgrove, L. D Schearer, G.K. Walters: Polarization of 3He gas by optical pumping. Phys. Rev. 132, 2561 (1963)

    Article  ADS  Google Scholar 

  83. M. Bouchiat, T.-R. Carver, C.M. Varnum: Nuclear polarization in 3He gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett. 5, 373 (1960)

    Article  ADS  Google Scholar 

  84. T.G. Walker, W. Happer: Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629 (1997)

    Article  ADS  Google Scholar 

  85. J. Becker, W. Heil, B. Krug, M. Leduc, M. Meyerhoff, P.J. Nacher, E.W. Otten, Th. Prokscha, L.D. Schearer, R. Surkau: Study of mechanical compression of spin-polarized 3He gas. Nucl. Instrum. Methods A 346, 45 (1994)

    Article  ADS  Google Scholar 

  86. W. Heil, H. Humblot, E.W. Otten, M. Schäfer, R. Surkau, M. Leduc: Very long relaxation times of spin-polarized 3He in metal coated cells. Phys. Lett. A 201, 337 (1995)

    Article  ADS  Google Scholar 

  87. E.W. Otten: ‘Interdisciplinary experiments with polarized noble gases.’ In: Atomic Physics 15, ed. by H.B. van Linden van den Heuvell, J.T.M. Walraven, M.W. Reynolds, Amsterdam 1996 (World Scientific, Singapore 1997), p. 113

    Google Scholar 

  88. E. Otten: ‘Polarized, compressed He gas and its applications.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann et al. (Springer, Berlin, Heidelberg 1997) p. 105

    Google Scholar 

  89. P.D. Perry, Th.R. Carver, S.O. Sari, S.E. Schnatterly: Optically pumped and monitored electron-nuclear double resonance in alkali halides. Phys. Rev. Lett. 22, 326 (1969)

    Article  ADS  Google Scholar 

  90. R.S. Alger: Electron Paramagnetic Resonance (Wiley, New York 1968)

    Google Scholar 

  91. J.E. Wertz: Electron Spin Resonance: Elementary Theory and Practical Applications (Chapman and Hall, New York 1986)

    Google Scholar 

  92. T.K. Ishii (ed.): Handbook of Microwave Technology, Vols. 1, 2 (Academic Press, London 1995)

    Google Scholar 

  93. J.J. Davies: Optically detected magnetic resonance and its applications. Contemp. Phys. 17, 275 (1976)

    Article  ADS  Google Scholar 

  94. C.H. Townes, A.L. Schawlow: Microwave Spectroscopy (Dover, New York 1975)

    Google Scholar 

  95. H.W. Kroto: Molecular Rotation Spectra (Wiley, London 1975)

    Google Scholar 

  96. W. Gordy, R.L. Cook: Microwave Molecular Spectra, 3rd edn., Techniques of Chemistry, Vol. XVIII (Wiley, New York 1984)

    Google Scholar 

  97. T. Lund (ed.): Surveillance of environmental pollution and resources by electromagnetic waves. NATO Adv. St. Inst. Ser. (Reidel, Dordrecht 1978)

    Google Scholar 

  98. E. Schanda: Physical Fundamentals of Remote Sensing (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  99. D.T. Gjessing: Remote surveillance by electromagnetic waves for air — water — land (Ann Arbor Science, Ann Arbor 1978)

    Google Scholar 

  100. K.A. Browning: Uses of radar in metrology. Contemp. Phys. 27, 499 (1986)

    Article  ADS  Google Scholar 

  101. Ch.G. Collier: Applications of Weather Radar Systems, 2nd edn. (Wiley, New York 1996)

    Google Scholar 

  102. R.J. Doviak, D.S. Zrnic: Doppler Radar and Weather Observation, 2nd edn. (Academic Press, London 1993)

    Google Scholar 

  103. M.A. Janssens (ed.): Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York 1993)

    Google Scholar 

  104. E. Schanda: Microwave radiometry applications to remote sensing. In: [7.74]

    Google Scholar 

  105. E.P.W. Attema: The radar signature of natural surfaces and its application in active microwave remote sensing. In: [7.74]

    Google Scholar 

  106. Ch. Elachi: Radar images of the Earth from space. Sci. Am. 247(6), 46 (1982)

    Article  Google Scholar 

  107. W. Noack (ed.): X-SAR Picture Book (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  108. D.L. Evans, E.R. Stofan, T.J. Jones, L.M. Godwin: Earth from sky. Sci. Am. 271(6), 44 (1994)

    Article  Google Scholar 

  109. Courtesy: J. Askne, CTH

    Google Scholar 

  110. S. Haykin, E.O. Lewis, R.K. Raney, J.R. Rossiter: Remote Sensing of Sea Ice and Icebergs (Wiley, New York 1994)

    Google Scholar 

  111. A. Gustavsson, P.O. Frölind, H. Hellsten, T. Jonsson, B. Larsson, G. Stenström: The airborne VHF SAR system CARABAS. Proc. IEEE Geoscience Remote Sensing Symp., IGARSS'93, Tokyo, Japan, Vol.2, pp. 558–562, August 1993

    Google Scholar 

  112. O.E.H. Rydbeck: ‘Interstellar molecules.’ In: Kosmos 1974, ed. by N.R. Nilsson (Swedish Phys. Soc., Stockholm 1975)

    Google Scholar 

  113. M. Elitzur: Physical characteristics of astronomical masers. Rev. Mod. Phys. 54, 1225 (1982)

    Article  ADS  Google Scholar 

  114. D.F. Dickinson: Cosmic masers. Sci. Am. 238(6), 68 (1978)

    Article  ADS  Google Scholar 

  115. A.W. Clegg, G.E. Nedoluka (eds.): Astrophysical Masers (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  116. M. Elitzar:Masers in the sky. Sci. Am. 272(2), 52 (1995)

    Google Scholar 

  117. W.M. Irvine, P.F. Goldsmith, A. Hjalmarsson: ‘Chemical abundances in molecular clouds.’ In: Interstellar Processes, ed. by D.J. Hollenback, H.A. Thronson Jr. (Reidel, Dordrecht 1987)

    Google Scholar 

  118. G. Winnewisser, G.C. Pelz: The Physics and Chemistry of Interstellar Molecular Clouds, Springer Lecture Notes on Physics Vol. 459 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  119. J. Lequeux, E. Roueff: Interstellar molecules. Phys. Rep. 200, 241 (1991)

    Article  ADS  Google Scholar 

  120. U.N. Rao, A. Weber (eds.): Spectroscopy of the Earth’s Atmosphere and Interstellar Medium (Academic Press, London 1992)

    Google Scholar 

  121. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins: Observation of a rapidly pulsating radio source. Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  122. R.A. Hulse, J.H. Taylor: Discovery of a pulsar in a binary system. Astrophys. J. 195, L51 (1975)

    Article  ADS  Google Scholar 

  123. J.H. Taylor, L.A. Fowler, P.M. McCulloch: Measurements of general relativistic effects in the binary pulsar PSR 1913 + 16. Nature 277, 437 (1979)

    Article  ADS  Google Scholar 

  124. J. Dietrich: Realizing LIGO. Engineering and Science 64(2), 8 (1998) http://www.ligo.caltech.eduweb/about/factsheet.html /LIGO-http://www.estec.esa.nl/spdwww/future/html/lisa.htm

  125. K. Rohlfs: Tools of Radio Astronomy (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  126. A.S. Webster, M.S. Longair: Millimetre and sub-millimetre astronomy. Contemp. Phys. 25, 519 (1984)

    Article  ADS  Google Scholar 

  127. A.C.S. Readhead: Radio astronomy and very long baseline interferometry. Sci. Am. 246(6), 38 (1982)

    Article  ADS  Google Scholar 

  128. A.R. Thompson, J. Moran, G.W. Swenson Jr.: Interferometry and Synthesis in Radio Astronomy (Wiley, New York 1986)

    Google Scholar 

  129. P. Morrison, J. Billingham, J. Wolfe: The Search for Extraterrestial Intelligence (prepared by NASA) (Dover, New York 1979; Academic Press, New York 1986)

    Google Scholar 

  130. P. Horowitz, C. Sagan: Five year of project META: An all-sky narrow-band radio search for extraterrestrial signals. Astrophys. J. 415, 218 (1993)

    Google Scholar 

  131. http://www.nauts.com/vehicles/70s/pioneer10-11.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svanberg, S. (2004). Radio-Frequency Spectroscopy. In: Atomic and Molecular Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18520-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18520-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20382-7

  • Online ISBN: 978-3-642-18520-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics