Skip to main content

DNA Hydrolysis: Mechanism and Reactivity

  • Chapter
Book cover Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

Abstract

It is essential that the primary, linear structure of DNA is stable to preserve the sequence of bases and hence the genetic code. The bases are assembled as nucleotide units, joined together by phosphate diester links. Given the need to permanently retain genetic information, it is not surprising that the phosphate diester is far more kinetically stable than other common biological functional groups such as amides or esters (Westheimer 1987). However, the backbone must also be cleavable to facilitate the synthesis, manipulation and repair of DNA. This role is naturally carried out by nucleases, which catalyse the cleavage of DNA either by hydrolysis of the phosphate diester bond (with varying degrees of sequence specificity) or by catalysing elimination of phosphate (and destroying one of the nucleotide units). The purpose of this brief review is to summarise the mechanisms relevant to DNA hydrolysis and in particular to estimate the rate of hydrolysis through attack at the phosphate diester under mild, aqueous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admiraal S, Herschlag D (2000) The substrate-assisted general base catalysis model for phosphate monoester hydrolysis: evaluation using reactivity comparisons. J Am Chem Soc 122:2145–2148

    Article  CAS  Google Scholar 

  • Anslyn EV, Perreault DM (l997) Unifying the current data on the mechanism of cleavage-transesterification of RNA.Angew Chem Int Ed Engl 36:432–450

    Google Scholar 

  • Aksnes G, Bergesen K (l966) Rate studies of cyclic phosphinates, phosphonates and phosphates.Acta Chem Scand 20:2508–2514

    Article  Google Scholar 

  • Barnard PWC, Bunton CA, Llewellyn DR, Vernon CA, Welch VA (1961) Reactions of organic phosphates. Part V. Hydrolysis of triphenyl and trimethyl phosphates. J Chem Soc 2670–2676

    Google Scholar 

  • Ba-Saif SA, Waring MA, Williams A (1990) Single transition state in the transfer of a neutral phosphoryl group between phenoxide ion nucleophiles in aqueous solution. J Am Chem Soc 112:8115–8120

    Article  CAS  Google Scholar 

  • Benkovic SJ, Schray KJ (1973) Chemical basis of biological phosphoryl transfer. In: Boyer P. D. (ed) The enzymes, 3rd edn. 8:210–238

    Google Scholar 

  • Bunton CA, Llewellyn DR, Oldham KG, Vernon CA (1958) The reactions of organic phosphates. Part I. The hydrolysis of methyl dihydrogen phosphate. J Chem Soc 3574–3587

    Google Scholar 

  • Bunton CA, Mhala MM, Oldham KG, Vernon CA (1960) The reactions of organic phosphates. Part III. The hydrolysis of dimethyl phosphate. J Chem Soc 3293–3301

    Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2002) Evidence for direct attack by hydroxide in phosphodiester hydrolysis. J Am Chem Soc124:10964–10965

    Article  PubMed  CAS  Google Scholar 

  • Charton M, Charton BI (1978) Steric effects. 12. Substituents at phosphorus. J Org Chem 43:2383–2386

    Article  CAS  Google Scholar 

  • Chin J (1991) Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach.Acc Chem Res 24:145–152

    Article  CAS  Google Scholar 

  • Dalby KN, Kirby AJ, Hollfelder F (1993) Models for nuclease catalysis: Mechanisms for general acid catalysis of the rapid intramolecular displacement of methoxide from a phosphate diester. J Chem Soc Perkin Trans 2 1269–1281

    Google Scholar 

  • Davies JE, Doltsinis NL, Kirby AJ, Roussev, Sprik M (2002) Estimating pKa values for pentaoxyphosphoranes. J Am Chem Soc 124:6594–6599

    Article  PubMed  CAS  Google Scholar 

  • Davis AM, Hall AD, Williams A (1988) Charge description of base-catalysed alcoholysis of aryl phosphodiesters: A ribonuclease model. J Am Chem Soc 110:5105–5108

    Article  CAS  Google Scholar 

  • Dejaegere A, Lim C, Karplus M (1991) Dianionic pentacoordinate species in the base-catalysed hydrolysis of ethylene and dimethyl phosphate. J Am Chem Soc 113:4353–4355

    Article  CAS  Google Scholar 

  • Florián J, Warshel A (1997) A fundamental assumption about OH-attack in phosphate ester hydrolysis is not fully justified. J Am Chem Soc 119:5473–5474

    Article  Google Scholar 

  • Garrett ER, Mehta PJ (1972a) Solvolysis of adenine nucleosides. I. Effects of sugars and adenine substituents on acid solvolyses. J Am Chem Soc 94:8532–8541

    Article  PubMed  CAS  Google Scholar 

  • Garrett ER, Mehta PJ (1972b) Solvolysis of adenine nucleosides. II. Effects of sugars and adenine substituents on alkaline solvolyses. J Am Chem Soc 94:8542–8547

    Article  PubMed  CAS  Google Scholar 

  • Gerlt JA (1992) Phosphate ester hydrolysis. In: Sigman DS (ed) The enzymes, 3rd edn. 20:95–139

    Google Scholar 

  • Gerlt JA (1993) Mechanistic principles of enzyme-catalysed cleavage of phosphodiester bonds. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases 2nd edn. pp 1–34

    Google Scholar 

  • Guthrie JP (1977) Hydration and dehydration of phosphoric acid derivatives: Free energies of formation of the pentacoordinate intermediates for phosphate ester hydrolysis and of monomeric metaphosphate. J Am Chem Soc 99:3991–4001

    Article  CAS  Google Scholar 

  • Haake PC, Westheimer WH (1961) Hydrolysis and exchange in esters of phosphoric acid. J Am Chem Soc 83:1102–1109

    Article  CAS  Google Scholar 

  • Hengge AC, Cleland WW (1991) Mechanism of phosphodiester cleavage with betacyclodextrin. J Org Chem 56:1972–1974

    CAS  Google Scholar 

  • Jencks WP (1980) When is an intermediate not an intermediate? Enforced mechanisms of general acid-base catalysed, carbocation, carbanion, and ligand exchange reactions. Acc Chem Res 6:161–169

    Article  Google Scholar 

  • Jencks WP (1981) How does a reaction choose its mechanism? Chem Soc Rev 10:345–375

    Article  CAS  Google Scholar 

  • Khan SA, Kirby AJ (1970) The reactivity of phosphate esters. Multiple structure-reactivity correlations for the reactions of trimesters with nucleophiles. J Chem Soc B 1172–1182

    Google Scholar 

  • Kirby AJ, Younas M (1970) The reactivity of phosphate esters. Diester hydrolysis. J Chem Soc B510–513

    Google Scholar 

  • Knowles JR (l980) Enzyme-catalysed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  Google Scholar 

  • Kosonen M, Youseti-Salakdeh E, Stromberg R, Lonnberg H (1997) Mutual isomerisation of uridine 2′-and 3′-alkylphosphates and cleavage to a 2′,3′-cyclic phosphate: The effect of the alkyl group on the hydronium-and hydroxide-ion-catalysed reactions. J Chem Soc Perkin Trans 2661–2666

    Google Scholar 

  • Kumamoto J, Cox Jr JR, Westheimer FH (l956) Barium ethylene phosphate. J Am Chem Soc 78:4858–4860

    Article  Google Scholar 

  • Lim C, Karplus M (1990) Nonexistence of dianionic pentacovalent intermediates in an ab initio study of the base-catalysed hydrolysis of ethylene phosphate. J Am Chem Soc 112:5872–5873

    Article  CAS  Google Scholar 

  • Lindahl T (l993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  Google Scholar 

  • Lindahl T, Andersson A (1972) Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11:3618–3623

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    Article  PubMed  CAS  Google Scholar 

  • Lloyd RS, Linn S (1993) Nucleases involved in DNA repair. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases 2nd edn. pp 263–316

    Google Scholar 

  • Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) Theoretical evaluation of pKa in phosphoranes: Implications for phosphate ester hydrolysis. J Am Chem Soc 124: 5010–5018

    Article  PubMed  CAS  Google Scholar 

  • McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: Glycosylase mechanisms and structures.Ann Rev Biochem 68:255–285

    Article  PubMed  CAS  Google Scholar 

  • Mildvan AS, (1997) Mechanisms of signalling and related enzymes. Proteins 29:401–416

    Article  PubMed  CAS  Google Scholar 

  • Oivanen M, Mikhailov SN, Padyukova NS, Lonnberg H (l993) Kinetics of mutual isomerisation of the phosphonate analogs of dinucleoside 2′,5′-and 3′,5′-monophosphates in aqueous solution. J Org Chem 58:1617–1619

    Article  Google Scholar 

  • Oivanen M, Padyukova NS, Kuusela S, Mikhailov SN, Lonnberg H (l995) Hydrolysis of isomeric cytidylyl-(3′,5′)-5′-C-methyluridines by acids, bases and metal ions: Steric effects in the hydrolysis of the phosphodiester bonds of RNA. Acta Chem Scand 49:307–319

    Article  Google Scholar 

  • Oivanen M, Kuusela S, Lonnberg H (1998) Kinetics and mechanisms for the cleavage and isomerisation of the phosphodiester bonds of RNA by Brensted acids and bases. Chem Rev 98:961–990

    Article  PubMed  CAS  Google Scholar 

  • Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93

    Article  PubMed  CAS  Google Scholar 

  • Strater N, Lipscomb WN, Klabunde T, Krebs B (1996) Two-metal catalysis in enzymatic acyl-and phosphoryl-transfer reactions. Angew Chem Int Ed Engl 35:2024–2055

    Article  Google Scholar 

  • Takeda N, Shibata M, Tajima N, Hirao K, Komiyama M (2000) Kinetic and theoretical studies on the alkaline hydrolysis of DNA. J Org Chem 65:4391–4396

    Article  PubMed  CAS  Google Scholar 

  • Taylor SD, Kluger R (1992) Heats of reaction of cyclic and acyclic phosphate and phosphonate esters. Strain discrepancy and steric retardation. J Am Chem Soc 114:3067–3071

    Article  CAS  Google Scholar 

  • Thatcher GRJ, Kluger R (1989) Mechanism and catalysis of nucleophilic substitution in phosphate esters. Adv Phys Org Chem 25:99–265

    Article  CAS  Google Scholar 

  • Uchimaru T, Tanabe K, Nishikawa S, Taira K (1991) Ab initio studies of a marginally stable intermediate in the base-catalysed methanolysis of dimethyl phosphate and nonexistence of the stereo electronically unfavourable transition state. J Am Chem Soc 113:4351–4353

    Article  CAS  Google Scholar 

  • Westheimer PH (1968) Pseudo-rotation in the hydrolysis of phosphate esters. Ace Chem Res 1:70–78

    Article  CAS  Google Scholar 

  • Westheimer PH (1987) Why nature chose phosphates. Science 235:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Wilcox DE (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458

    Article  PubMed  CAS  Google Scholar 

  • Williams NH, Cheung W, Chin J (1998) Reactivity of phosphate diesters doubly coordinated to a dinuclear cobalt(III) complex: dependence of the reactivity on the basicity of the leaving group. J Am Chem Soc 120:8079–8087

    Article  CAS  Google Scholar 

  • Williams NH, Takasaki B, Wall M, Chin J (1999) Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Ace Chem Res 32:485–493

    Article  CAS  Google Scholar 

  • Williams NH, Wyman P (2001) Base catalysed phosphate diester hydrolysis. Chem Commun 1268–1269

    Google Scholar 

  • Wolfenden R, Ridgway C, Young G (1988) Spontaneous hydrolysis of ionised phosphate monoesters and diesters and the proficiencies of phosphatases and phosphodiesterases as catalysts. J Am Chem Soc 1998 120:833–834

    Article  CAS  Google Scholar 

  • Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Ace Chem Res 34:938–945

    Article  CAS  Google Scholar 

  • Yliniemela A, Uchimaru T, Tanabe K, Taira K (1993) Do pentacoordinate oxyphosphorane intermediates always exist? J Am Chem Soc 115:3032–3033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, N.H. (2004). DNA Hydrolysis: Mechanism and Reactivity. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics