Skip to main content

A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation

  • Conference paper
Arthroplasty of the Spine

Abstract

Lower back pain and disc degeneration negatively affect quality of life and impose an enormous financial burden. An extensive body of scientific work has evolved that characterizes the disc, demonstrating spinal anatomy and morphology that contribute to risk and likely promote failure. Ultimately, matrix failure is responsible for mechanical failure, which in turn results in spinal compromise anatomically and subsequent pain. One intervening approach to breaking this sequence has been to repopulate the anatomy with autologous disc chondrocytes — cells capable of restoring the matrix and retaining the mechanical balance by which the disc functions. This strategy has been implemented both in patients and in animal models, and early results, although preliminary, support the premise as a positive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J, et al (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412

    Article  PubMed  CAS  Google Scholar 

  2. Baer AE, Wang JY, Kraus VB, et al (2001) Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 19:2–10

    Article  PubMed  CAS  Google Scholar 

  3. Bibby SRS, Jones DA, Lee RB, Yu J, Urban JPG (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68:537–542

    Article  PubMed  CAS  Google Scholar 

  4. Boden SD, Davis DO, Dina TS, Mark AS, Wiesel S (1990) Abnormal magnetic resonance scans of the lumbar spine in asymptomatic subjects: a prospective investigation. J Bone Joint Surg Am 72:1178–1184

    PubMed  CAS  Google Scholar 

  5. Doers TM, Kang JD (1999) The biomechanics and biochemistry of disc degeneration. Curr Opin Orthop 10: 117–121

    Article  Google Scholar 

  6. Frank C (1997) The biology of ligament reconstruction. In: Niwa S, Yoshino S, Kurosaka M (eds) Reconstruction of the knee joint. Springer, Tokyo, pp 7–27

    Chapter  Google Scholar 

  7. Gelberman R, Goldberg V, An K-N, Banes A (1998) Tendon. In: Woo Sl-Y, Buckwalter JA (eds) Injury and repair of musculoskeletal soft tissue. American Academy of Orthopaedic Surgeons, Park Ridge, pp 5–40

    Google Scholar 

  8. Ghosh P, Bushell GR, Taylor TFK, Akeson WH (1977) Collagens, elastins and noncollagenous protein of the intervertebral disc. Clin Orthop 129:124–132

    PubMed  CAS  Google Scholar 

  9. Gruber HE, Johnson T, Norton HJ, Hanley EN Jr (2002) The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses. Spine 27:230–234

    Article  PubMed  Google Scholar 

  10. Hutton WC, Elmer WA, Boden SD, Hyon S, Toribatake Y, Tomita K, Hair G A (1999) The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24:1507–1515

    Article  PubMed  CAS  Google Scholar 

  11. Hutton WC, Ganey TM, Elmer WA, Kozlowska E, Ugbo JL, Doh ES, Whitesides TE Jr (2000) Does long-term compressive loading on the intervertebral disc cause degeneration? Spine 25:2993–3004

    Article  PubMed  CAS  Google Scholar 

  12. Kawaguchi Y, Osada R, Kanamori M, Ishihara H, Ohmori K, Matsui H, et al (1999) Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 24:2456–2460

    Article  PubMed  CAS  Google Scholar 

  13. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: An in vivo mouse model and finite-element study. Spine 21: 2493–2506

    Article  Google Scholar 

  14. Malko JA, Hutton WC, Fajman WA (2002) An in vivo MRI study of the changes in volume (and fluid content) of the lumbar intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J Spinal Disord Tech 15:157–163

    Article  PubMed  Google Scholar 

  15. Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13: 173–178

    Article  PubMed  CAS  Google Scholar 

  16. Nabeshima Y, Grood ES, Sakurai A, Herman JH (1996) Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14: 123–130

    Article  PubMed  CAS  Google Scholar 

  17. Nerlich AG, Schleicher ED, Boos N (1997) Immunhistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22:2781–2795

    Article  PubMed  CAS  Google Scholar 

  18. Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop 389:94–101

    Article  PubMed  Google Scholar 

  19. Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K (2000) Reinsertion of stimulated pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 18:988–997

    Article  PubMed  CAS  Google Scholar 

  20. Paassilta P, Lohiniva J, Goring HH, Perala M, Raina SS, Karppinen J,et al (2000) Identification of a common risk factor for lumbar disk disease. JAMA 285:1843–1849

    Article  Google Scholar 

  21. Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389

    Article  PubMed  CAS  Google Scholar 

  22. Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk. An in vivo study of solute transport. Clin Orthop 129:101–114

    PubMed  CAS  Google Scholar 

  23. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons L, Peltonen L, Koskenvuo M (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 23:2477–2485

    Article  PubMed  CAS  Google Scholar 

  24. Wang JY, Baer AE, Kraus VB, Setton LA (2001) Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26:1747–1752

    Article  PubMed  CAS  Google Scholar 

  25. Yasuma T, Saito S, Kihara K (1988) Schmorl’s nodes. Correlation of X-ray and histological findings in postmortem specimens. Acta Pathol Jpn 38:723–733

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Ganey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganey, T.M., Meisel, H.J. (2004). A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation. In: Gunzburg, R., Mayer, H.M., Szpalski, M., Aebi, M. (eds) Arthroplasty of the Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18508-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18508-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20295-0

  • Online ISBN: 978-3-642-18508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics