Skip to main content

Development and preclinical testing of a new tension-band device for the spine: the Loop system

  • Conference paper
  • 192 Accesses

Abstract

Wire sutures, cerclage constructs, and tension bands have been used for many years in orthopedic surgery. Spinous process and sublam-inar wires and other strands or cables are used in the spine to re-establish stability of the posterior spinal ligament complex. Rigid monofilament wires often fail due to weakening created during twisting or wrapping. Stronger metal cables do not conform well to bony surfaces. Polyethylene cables have higher fatigue strength than metal cables. The Loop cable is a pliable, radiolucent, polyethylene braid. Creep of the Loop/locking clip construct is similar to metal cable constructs using crimps. Both systems have less creep than knotted polyethylene cable constructs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Baz MO, Mathur N (1995) Modified technique of tension band wiring in flexion injuries of the middle and lower cervical spine. Spine 20:1241–1244

    PubMed  Google Scholar 

  2. Allen BL, Ferguson RL (1986) Neurological injuries with the Galveston technique of L-rod instrumentation for scoliosis. Spine 11:14–17

    Article  PubMed  Google Scholar 

  3. Andersson GBJ, Ortengren R, Nachemson A, et al (1974) Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scand J Rehabil Med 6:104

    PubMed  CAS  Google Scholar 

  4. Andersson GBJ, Chaffin DB, Pope MH (1991) Occupational biomechanics of the lumbar spine, in occupational low back pain: assessment, treatment, and prevention. Mosby Year Book, St. Louis

    Google Scholar 

  5. Arnold PG, Pairolero PC (1984) Chest wall reconstruction. Experience with 100 consecutive patients. Ann Surg 199:725–732

    Article  PubMed  CAS  Google Scholar 

  6. Bernard TN, Johnston CE, Roberts JM, et al (1983) Late complications due to wire breakage in segmental spinal instrumentation: report of two cases. J Bone Joint Surg Am 65:1339–1345

    PubMed  Google Scholar 

  7. Bernard TN, Whitecloud TS, Haddad RJ (1983) Segmental spinal instrumentation in the management of fractures of the thoracolumbar spine: a preliminary report. Orthop Trans 7:227

    Google Scholar 

  8. Bernhardt A (1993) Tensile testing of UHMWPE Spectra-1000 braid. In: Smith & Nephew Spine Technical Report SP-93-11

    Google Scholar 

  9. Bernhardt A, Taylor M (1993) Cyclic creep testing of Spectra-1000 braid and titanium cable constructs. In: Smith & Nephew Spine Technical Report SP-93-12

    Google Scholar 

  10. Boeree NR, Dove J (1993) The selection of wires for sublaminar fixation. Spine 18:497–503

    PubMed  CAS  Google Scholar 

  11. Brodsky AE, Khalil MA, Sassard WR, et al (1992) Repair of symptomatic pseudoarthrosis of anterior cervical fusion. Posterior versus anterior repair. Spine 17:1137–1143

    CAS  Google Scholar 

  12. Coe JD, Warden KE, Sutterlin CE, et al (1989) Biomechanical evaluation of cervical spinal stabilization methods in human cadaveric model. Spine 14: 1122–1131

    Article  PubMed  CAS  Google Scholar 

  13. Cooper PR (1993) Posterior stabilization of the cervical spine. Clin Neuro-surg 40:286–320

    CAS  Google Scholar 

  14. Cordoso A, Tajonar F, Luque ER (1976) Osteotomy of the spine, new concepts, preliminary report (in Spanish). Anal Orthop Traumatol 12:105–113

    Google Scholar 

  15. Crawford RJ, Sell PJ, Ali MS, et al (1989) Segmental spinal instrumentation: a study of the mechanical properties of materials used for sublaminar fixation. Spine 14:632–635

    Article  PubMed  CAS  Google Scholar 

  16. Daigle K, Cassidy J, Holbrook J (1992) Fatigue testing of braided Spectra UHMWPE surgical cable. In: Smith & Nephew Orthopedic Research Report OR-92-49

    Google Scholar 

  17. Davey JR, Rorabeck CH, Bailey SI, et al (1985) A technique of posterior cervical fusion for instability of cervical spine. Spine 10:722–728

    Article  PubMed  CAS  Google Scholar 

  18. Dickman CA, Sonntag VKH (1993) Wire fixation of the cervical spine biomechanical principles and surgical techniques. BNI (Barrow Neurological Institute) Quarterly 9:2–16

    Google Scholar 

  19. Dickman CA, Papadopoulos SM, Crawford NR, et al (1997) Comparative mechanical properties of spinal cable and wire fixation systems. Spine 22:596–604

    Article  PubMed  CAS  Google Scholar 

  20. Dove J (1989) Segmental wiring for spinal deformity: a morbidity report. Spine 14:229–231

    Article  PubMed  CAS  Google Scholar 

  21. Drummond DS (1999) Segmental spinal instrumentation with spinous process wires. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  22. Ferguson RL, Allen BL, Seay GB (1982) The evolution of segmental spinal instrumentation in the treatment of unstable thoracolumbar spine fractures. Orthop Trans 6:346

    Google Scholar 

  23. Guadagni JR, Drummond DS (1986) Strength of surgical wire fixation: a laboratory study. Clin Orthop 209:176–181

    PubMed  Google Scholar 

  24. Hambly M, Lee CK, Gutteling E, et al (1989) Tension band wiring-bone grafting for spondylolysis and spondylolisthesis. Spine 14:455–459

    Article  PubMed  CAS  Google Scholar 

  25. Heller KD, Prescher A, Schneider T, et al (1998) Stability of different wiring techniques in segmental spinal instrumentation. An experimental study. Arch Orthop Trauma Surg 117:96–99

    Article  PubMed  CAS  Google Scholar 

  26. Herzwurm PJ, Walsh J, Pettine KA, et al (1992) Prophylactic cerclage: a method of preventing femur fracture in uncemented total hip arthroplasty. Orthopedics 15:143–146

    PubMed  CAS  Google Scholar 

  27. Kazarian LE (1972) Dynamic response characteristics of the human vertebral column. Acta Orthop Scand Suppl 146: 1–186

    Google Scholar 

  28. Lange F (1986) The classic. Support for the spine by means of buried steel bars attached to the vertebrae, by Fritz Lange, 1910. Clin Orthop 203:3–6

    Google Scholar 

  29. Lange E, Bernhardt A (1994) Construct tensile testing of UHMWPE braid with comparison of titanium cable. In: Smith & Nephew Orthopedic Research Report OP-94-71

    Google Scholar 

  30. Lee CK, Rosa R, Fernand R (1986) Surgical treatment of tumors of the spine. Spine 11:201–208

    Article  PubMed  CAS  Google Scholar 

  31. Lin PM (1985) Posterior lumbar interbody fusion technique: complications and pitfalls. Clin Orthop 193:90–102

    PubMed  Google Scholar 

  32. Lovely TJ, Carl A (1995) Posterior cervical spine fusion with tension-band wiring. J Neurosurg 83:631–635

    Article  PubMed  CAS  Google Scholar 

  33. Luque ER (1982) Segmental spinal instrumentation for correction of scoliosis. Clin Orthop 163:192–198

    PubMed  Google Scholar 

  34. Luque E (1986) Segmental spinal instrumentation of the lumbar spine. Clin Orthop 203:126–134

    PubMed  Google Scholar 

  35. Luque ER, Cassis, Nelson, et al (1982) Segmental spinal instrumentation in the treatment of fractures of the thoracolumbar spine. Spine 7:312–317

    Article  PubMed  CAS  Google Scholar 

  36. Marras WS (1987) Predictions of forces acting upon the lumbar spine under isometric and isokinetic conditions: a model experiment comparison. Int J Ind Ergonomics 3:19–27

    Article  Google Scholar 

  37. Marras WS, Reilly CH (1988) Network of internal trunk loading activities under controlled trunk conditions. Spine 13:661–667

    PubMed  CAS  Google Scholar 

  38. Martin RJ (1996) SecureStrand Cable System. Neurosurgery 38:842–843

    Article  PubMed  CAS  Google Scholar 

  39. McAfee PC, Bohlman HH, Wilson WL (1985) The triple wire fixation technique for stabilization of acute fracture-dislocations: a biomechanical analysis. Orthop Trans 9:142

    Google Scholar 

  40. McGill SM (1990) Loads on the lumbar spine and associated tissues. In: Goel VK, Weinstein JN (eds) Biomechanics of the spine: clinical and surgical perspective. CRC Press, Boca Raton, pp 66–94

    Google Scholar 

  41. McGill SM, Norman RW (1986) Partitioning of the L4–L5 dynamic moment into disc, ligamentous and muscular components during lifting. Spine 11: 666

    Article  PubMed  CAS  Google Scholar 

  42. Morris JM, Lucas DB, Bresler B (1961) Role of the trunk in stability of the spine. J Bone Joint Surg 43:327

    Google Scholar 

  43. Munson G, Satterlee C, Hammond S, et al (1984) Experimental evaluation of Harrington rod fixation supplemented with sublaminar wires in stabilizing thoracolumbar fracture-dislocations. Clin Orthop 189:97–102

    PubMed  Google Scholar 

  44. Mykleburst JB, Pintar F, Yoganandan N, et al (1988) Tensile strength of spinal ligaments. Spine 13:526–531

    Google Scholar 

  45. Olson SA, Gaines RW (1987) Removal of sublaminar wires after spinal fusion. J Bone Joint Surg Am 69:1419–1423

    PubMed  CAS  Google Scholar 

  46. Papp T, Porter RW, Aspden RM, et al (1997) An in-vitro study of the biomechanical effects of flexible stabilization on the lumbar spine. Spine 22:151–155

    Article  PubMed  CAS  Google Scholar 

  47. Resina J, Ferreiira-Alvez A (1977) A technique for correction and internal fixation for scoliosis. J Bone Joint Surg Br 5:159–169

    Google Scholar 

  48. Rhinelander FW, Stewart CL (1983) Experimental fixation of femoral osteotomies by cerclage with nylon straps. Clin Orthop 179:298–307

    PubMed  Google Scholar 

  49. Schlegel KF, Pon MA (1985) Biomechanics of posterior lumbar interbody fusion (PLIF) in spondylolisthesis. Clin Orthop 193:115–119

    PubMed  Google Scholar 

  50. Schopfer A, Willett K, Powell J, et al (1993) Cerclage wiring in internal fixation of acetabular fractures. J Orthop Trauma 7:236–241

    Article  PubMed  CAS  Google Scholar 

  51. Scuderi GJ, Greenberg SS, Cohen DS, et al (1993) Biomechanical evaluation of magnetic resonance imaging-com-patible wire in cervical spine fixation. Spine 18:1991–1994

    Article  PubMed  CAS  Google Scholar 

  52. Segal D, Whitelaw GP, Gumbs V, et al (1981) Tension band fixation of acute cervical spine fractures. Clin Orthop 159:211–222

    PubMed  Google Scholar 

  53. Sheperd DE, Leahy JC, Mathias KJ, et al (2000) Spinous process strength. Spine 25:319–323

    Article  Google Scholar 

  54. Songer M (1996) Posterior cervical arthrodesis using the Songer cable system. In: Richard G. Fessler RG, Regis W, Haid RW (eds) Current techniques in spinal stabilization. McGraw-Hill, New York

    Google Scholar 

  55. Songer MN (1996) The role of cables in lumbosacral fusion. In: Margulies JY, Floman Y, Farcy JPC, Neuwirth MG (eds) Lumbosacral and spino-pelvic fixation. Lippincott-Raven, Philadelphia

    Google Scholar 

  56. Songer MN, Spencer DL, Meyer PR, et al (1991) The use of sublaminar cables to replace luque wires. Spine 16:S418–S421

    Article  PubMed  CAS  Google Scholar 

  57. Stevens SS, Irish AJ, Vachtesevanos JG, et al (1995) A biomechanical study of three wiring techniques for cerclage-plating. J Orthop Trauma 9:381–387

    Article  PubMed  CAS  Google Scholar 

  58. Sullivan JA (1984) Sublaminar wiring of Harrington distraction rods for unstable thoracolumbar spine fractures. Clin Orthop 189:178–185

    PubMed  Google Scholar 

  59. Tscherne H, Haas N, Krettek C (1986) Intermedullary nailing combined with cerclage wiring in the treatment of fractures of the femoral shaft. Clin Orthop 212:62–67

    PubMed  Google Scholar 

  60. Vaccaro A, Singh K (1999) Principles of spinal instrumentation for cervical spinal trauma. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  61. Watts C, Smith H, Knoller N (1993) Risks and cost-effectiveness of sub-laminar wiring in posterior fusion of cervical spine trauma. Surg Neurol 40: 457–460

    Article  PubMed  CAS  Google Scholar 

  62. Weiland DJ, McAfee PC (1991) Posterior cervical fusion with triple-wire strut graft techniques; one hundred consecutive patients. J Spinal Disord 4:15–21

    PubMed  CAS  Google Scholar 

  63. Weis JC, Cunningham BW, Kanayama M, et al (1996) In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization. Spine 21:2108–2114

    Article  PubMed  CAS  Google Scholar 

  64. Wenger D, Miller S, Wilkerson J (1982) Evaluation of fixation sites for segmental instrumentation of the human vertebrae. Orthop Trans 6:23–24

    Google Scholar 

  65. Wilson PD, Straub LR (1952) Lumbosacral fusion with metallic-plate fixation. AAOS Instructional Course Lectures, vol IX. JW Edwards, Ann Arbor, pp 53–57

    Google Scholar 

  66. Wolfe S (2000) Comparative ferrule/tension band system testing. In: Spine-ology Inc. Internal Documents (41-012)

    Google Scholar 

  67. Wolfe S (2001) The Loop system verification testing. In: Spineology Inc. Internal Documents (41-026)

    Google Scholar 

  68. Zindrick MR, Knight GW, Bunch WH, et al (1989) Factors influencing the penetration of wires into the neural canal during segmental wiring. Joint Bone Joint Surg Am 71:742–750

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Kuslich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garner, M.D., Wolfe, S.J., Kuslich, S.D. (2004). Development and preclinical testing of a new tension-band device for the spine: the Loop system. In: Gunzburg, R., Mayer, H.M., Szpalski, M., Aebi, M. (eds) Arthroplasty of the Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18508-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18508-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20295-0

  • Online ISBN: 978-3-642-18508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics