Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 157))

Abstract

The monoamine oxidase inhibitors (MAOIs) have been in clinical use for five decades. The coincidental discovery that inhibiting brain monoamine oxidase resulted in antidepressant benefits indirectly led to the norepinephrine (NE) and serotonin hypotheses for depression. Phenelzine (PLZ) and tranylcypromine (TCP) typify the classical, nonselective and irreversible inhibitors; selegiline (SEL) selectively but irreversibly inhibits MAO-B and is an established adjunct therapy for Parkinson's disease; while moclobemide and befloxatone represent examples of selective and reversible inhibitors. These agents provide opportunities to examine brain amine and amino acid levels during treatment and have also contributed to emerging aware of neurogenesis and neuronal rescue as potential antidepressant properties. Also of emerging interest are the extended sites of action beyond MAO for these agents including γ-aminobutyric acid (GABA) and imidazoline binding sites.

Despite the well-known clinical concerns about food and drug interactions and the high side-effect burden associated with classical MAOIs, they continue to be third line agents for treatment-resistant depression. PLZ is also a second line agent for atypical depression. Moclobemide is the only generally available reversible inhibitor of MAO-A and has obtained limited acceptance as a first line treatment in some countries for major depressive disorder (MDD), particularly in patients with prominent anxiety symptoms. It also has one of the lowest side-effect burdens of the MAOIs and, unlike the SSRIs, rarely produces sexual dysfunction. A transdermal form of SEL has been investigated for treating MDD. With appropriate cautions, the MAOIs continue to provide an important alternative class of antidepressants for the treatment of various forms of depressive illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alemanay R, Olmos G, Garcia-Sevilla J (1997) Labelling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) in rat brain and liver: characterization, regulation and relation to monoamine oxidase enzymes. Naunyn-Schmiedeberg's Arch Pharmacol 356:39–47

    Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edition. American Psychiatric Association, Washington, DC

    Google Scholar 

  • American Psychiatric Association. Practice guidelines for major depressive disorder, second edition. Washington, DC: American Psychiatric Association; 2000: suppl. p 11.

    Google Scholar 

  • Amrein R, Martin JR, Cameron AM (1999) Moclobemide in patients with dementia and depression. Adv Neuro 80:509–519

    CAS  Google Scholar 

  • Amsterdam JD. (1991) Use of high dose tranylcypromine in resistant depression. In: Amsterdam JD (ed) Advances in neuropsychiatry and psychopharmacology, volume 2. Refractory depression. Raven Press, New York

    Google Scholar 

  • Andree TH, Clarke DE (1982) Characteristics and specificity of phenelzine and benserazide as inhibitors of benzylamine oxidase and monoamine oxidase. Biochem Pharmacol 31:825–830

    PubMed  CAS  Google Scholar 

  • Bach MV, Coutts RT, Baker GB (2000) Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line. Xenobiotica 30:297–306

    PubMed  CAS  Google Scholar 

  • Baker GB, Hampson DR, Coutts RT, Micetich RG, Hall TW, Rao TS (1986) Detection and quantitation of a ring-hydroxylated metabolite of the antidepressant drug tranylcypromine. J Neural Transm 1986;65:233–243

    PubMed  CAS  Google Scholar 

  • Baker GB, Wong JTF, Yeung JM, Coutts RT (1991) Effects of the antidepressant phenelzine on brain levels of g-aminobutyric acid (GABA). J Affect Disord 21:207–211

    PubMed  CAS  Google Scholar 

  • Baker GB, Coutts RT, McKenna KF, Sherry-McKenna RL (1992) Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. J Psychiatry Neurosci 17:206–214

    PubMed  CAS  Google Scholar 

  • Baker GB, Coutts RT, Greenshaw AJ (2000) Neurochemical and metabolic aspects of antidepressants: An overview. J Psychiatr Neurosci 25:481–496

    CAS  Google Scholar 

  • Barak Y, Ur E, Achiron A (1999) Moclobemide treatment in multiple sclerosis patients with comorbid depression: an open-label safety trial. J Neuropsychiatry Clin Neurosci 11:271–273

    PubMed  CAS  Google Scholar 

  • Barker WA, Scott J, Eccleston D (1987) The Newcastle chronic depression study: results of a treatment regime. Int Clin Psychopharmacol 2:261–272

    PubMed  CAS  Google Scholar 

  • Barrand MA, Callingham BA (1982) Monoamine oxidase activities in brown adipose tissue of the rat: some properties and subcellular distribution. Biochem Pharmacol 31:2177–2184

    PubMed  CAS  Google Scholar 

  • Barrand MA, Fox SA (1982) Amine oxidase activities in brown adipose tissue of the rat: identification of semicarbazide-sensitive (clorgyline-resistant) activity at the fat cell membrane. J Pharm Pharmacol 36:652–658

    Google Scholar 

  • Barrand MA, Fox SA, Callingham BA (1984) Amine oxidase activities in brown adipose tissue of the rat: identification of semicarbazide-sensitive (clorgyline-resistant) activity at the fat cell membrane. J Pharm Pharmacol 38:288–293

    Google Scholar 

  • Bentue-Ferrer D, Menard G, Allain H (1996) Monamine oxidase B inhibitors: Current status and future potential. CNS Drugs 6:217–236

    CAS  Google Scholar 

  • Berlanga C, Ortega-Soto HA (1995) A 3-year follow-up of a group of treatment-resistant depressed patients with a MAOI/tricyclic combination. J Affect Disord 34:187–92

    PubMed  CAS  Google Scholar 

  • Bieck PR, Antonin KH (1989) Tyramine potentiation during treatment with MAO inhibitors: brofaromine and moclobemide vs irreversible inhibitors. J Neural Transm Suppl 28:21–31

    PubMed  CAS  Google Scholar 

  • Bieck P, Boulton A (1994) Tyramine potentiation during treatment with MAOIs. In: Kennedy S (ed) Clinical advances in monoamine oxidase inhibitors therapies, vol. 43. American Psychiatric Press, Washington, DC, pp 83–110.

    Google Scholar 

  • Blackwell B. (1963) Hypertensive crisis due to monamine-oxidase inhibition. Lancet 2:849–851.

    PubMed  CAS  Google Scholar 

  • Bodkin JA, Amsterdam JD (1999) Transdermal selegiline in the treatment of patients with major depression: a double-blind placebo-controlled trial. Presented at the annual meeting of American College of Neuropsychopharmacology, December 1999, Acapulco, Mexico

    Google Scholar 

  • Bodkin JA, Kwon AE (2001) Selegiline and other atypical monoamine oxides inhibitors in depression. Psychiatric Annals 31 385–391

    Google Scholar 

  • Bonneau MJ, Poulin R (2000) Spermine oxidation leads to necrosis with plasma membrane phosphatidylserine redistribution in mouse leukemia cells. Exp Cell Res 259:23–34

    PubMed  CAS  Google Scholar 

  • Boomsma F, de Kam PJ, Tjeerdsma G, van den Meiracker AH, van Veldhuisen DJ (2000) Plasma semicarbazide-sensitive amine oxidase (SSAO) is an independent prognostic marker for mortality in chronic heart failure. Eur Heart J 21:1859–63

    PubMed  CAS  Google Scholar 

  • Boulton AA (1999) Antiapoptotic drugs: a progression of research. Can J Cont Med Educ March:195–202

    Google Scholar 

  • Bousquet P, Feldman J (1999) Drugs acting on imidazoline receptors: a review of their pharmacology, their use in blood pressure control and their potential interest in cardioprotection. Drugs 58:799–812

    PubMed  CAS  Google Scholar 

  • Buffoni F (1995) Semicarbazide-sensitive amine oxidases: some biochemical properties and general considerations. Prog Brain Res 106:323–331

    PubMed  CAS  Google Scholar 

  • Calabrese JR, Rapport DJ, Kimmel SE, Shelton MD (1999) Controlled trials in bipolar I depression: focus on switch rates and efficacy. Eur Neuropsychopharmacol Suppl 4:S109–112

    Google Scholar 

  • Callingham BA, Crosbie AE, Rous BA (1995) Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. Prog Brain Res 106:305–321

    PubMed  CAS  Google Scholar 

  • Calverley DG, Baker GB, Coutts RT, Dewhurst WG (1981) A method for measurement of tranylcypromine in rat brain regions using gas chromatography with electron capture detection. Biochem Pharmacol 30:861–867

    PubMed  CAS  Google Scholar 

  • Carpene C, Collon P, Remaury A, Cordi A, Hudson A, Nutt D, Lafontan M (1995a) Inhibition of amine oxidase activity by derivatives that recognize imidazoline I2 sites. J Pharm Exp Ther 272:681–688

    CAS  Google Scholar 

  • Carpene C, Marti L, Hudson A, Lafontan M (1995b) Nonadrenergic imidazoline binding sites and amine oxidase activities in fat cells. Ann N YAcad Sci 763:380–397

    CAS  Google Scholar 

  • Carrillo MC, Kanai S, Nokubo M, Kitani K (1991) L-deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48:517–521

    PubMed  CAS  Google Scholar 

  • Chiueh CC, Huang SJ, Murphy DL (1994) Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity. J Neural Transm Suppl 41:189–196

    PubMed  CAS  Google Scholar 

  • Clark B, Thompson JW, Widdington G (1972) Analysis of the inhibition of pethidine N-demethylation by monoamine oxidase inhibitors and some other drugs with special reference to drug interactions in man. Br J Pharmacol 44:89–99

    PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Horita A (1969a) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase: I. Studies in vitro. Biochem Pharmacol 18:1011–1020

    PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Horita A (1969b) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase: II. Studies in vivo. Biochem Pharmacol 18:1021–1028

    PubMed  CAS  Google Scholar 

  • Clow A, Hussain T, Glover V, Sandler M, Dexter DT, Walker M (1991) (-)-Deprenyl can induce soluble superoxide dismutase in rat striata. J Neural Transm Gen Sect 86:77–80

    PubMed  CAS  Google Scholar 

  • Cowdry RW, Gardner DL (1988) Pharmacotherapy of borderline personality disorder. Alprazolam, carbamazepine, trifluoperazine, and tranylcypromine. Arch Gen Psychiatry 45:111–119

    PubMed  CAS  Google Scholar 

  • Curet O, Damoiseau G, Aubin N, Sontag N, Rovei V, Jarreau FX (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I. Biochemical profile. J Pharmacol Exp Ther 277:253–264

    PubMed  CAS  Google Scholar 

  • Da Prada M, Kettler R, Keller HH, Burkard WP, Muggli-Maniglio D, Haefely WE (1989) Neurochemical profile of moclobemide, a short-acting and reversible inhibitor of monoamine oxidase type A. J Pharmacol Exp Ther 248:400–414

    PubMed  Google Scholar 

  • Davidson JR, Miller RD, Turnbull CD, Sullivan JL (1982) Atypical depression. Arch Gen Psychiatry 39:527–534

    PubMed  CAS  Google Scholar 

  • Dilsaver SC (1988) Monoamine oxidase inhibitor withdrawal phenomena: Symptoms and pathophysiology. Acta Psychiatr Scand 78:1–7

    PubMed  CAS  Google Scholar 

  • Dupont H, Davies DS, Strolin-Benedetti M (1987) Inhibition of cytochrome P-450-dependent oxidation reactions by MAO inhibitors in rat liver microsomes. Bichem Pharmacol 36:1651–1657

    CAS  Google Scholar 

  • Dyck LE, Durden DA, Boulton M (1985) Formation of β-phenylethylamine from the anti-depressant, β-phenylethythydrazine. Biochem Pharmacol 34:1925–1929

    PubMed  CAS  Google Scholar 

  • Eade NR, Renton KW (1970) Effect of monoamine oxidase inhibitors on the N-demethylation and hydrolysis of meperidone. Biochem Pharmacol 19:2243–2250

    PubMed  CAS  Google Scholar 

  • Ebert D, Albert R, May A, Stosiek I, Kaschka W (1995) Combined SSRI-RIMA treatment in refractory depression. Safety data and efficacy. Psychopharmacology (Berl) 119:342–344

    CAS  Google Scholar 

  • Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VG, Dillon MP (1998) ’seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 19:381–390

    PubMed  CAS  Google Scholar 

  • Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacin M, Testar X, Degerman E, Carpene C, Zorzano A (2000) Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J 350(Pt 1):171–180

    PubMed  CAS  Google Scholar 

  • Filip V, Kolibas E (1999) Selegiline in the treatment of Alzheimer's disease: A long-term randomized placebo-controlled trial. Czech and Slovak Senile Dementia of Alzheimer Type Study Group. J Psychiatry Neurosci 24:234–243

    PubMed  CAS  Google Scholar 

  • Flanigan M, Shapiro C (1994) MAOIs and sleep. In: Kennedy S (ed) Clinical advances in monoamine oxidase inhibitor therapies. American Psychiatric Press, Washington, DC, pp 125–145

    Google Scholar 

  • Foster BC, Litster DL, Zamecnik J, Coutts RT (1991) The biotransformation of tranylcypromine by Cunninghamella echinulata. Can J Microbiol 37:791–795

    PubMed  CAS  Google Scholar 

  • Fuentes JA, Oleshansky MA, Nef NH (1976) Comparison of the antidepressant activity of (-) and (+) tranylcypromine in an animal model. Biochem Pharmacol 25:801–804

    PubMed  CAS  Google Scholar 

  • Fulton B, Benfield P (1996) Moclobemide. An update of its pharmacological properties and therapeutic use. Drugs 52:450–474

    PubMed  CAS  Google Scholar 

  • Gardner DM, Shulman KI, Walker SE, Tailor SA (1996) The making of a user friendly MAOI diet. J Clin Psychiatry 57:99–104

    PubMed  CAS  Google Scholar 

  • Gargalidid-Moudanos C, Remaury A, Pizzinat N, Parini A (1997) Predominant expression of monoamine oxidase B isoform in rabbit renal proximal tubule: regulation by I2 imidazoline ligands in intact cells. Mol Pharmacol 51:637–643

    Google Scholar 

  • Gelerenter CS, Uhde TW, Cimbolic P, Arnkoff DB, Vittone BJ, Tancer ME, Bartko JJ (1991) Cognitive-behavioral and pharmacological treatments of social phobia. A controlled study. Arch Gen Psychiatry 48:938–945

    Google Scholar 

  • Gelowitz DL, Paterson IA (1999) Neuronal sparing and behavioral effects of the antiapoptotic drug, l-deprenyl, following kainic acid administration. Pharmacol Biochem Behav 62:255–262

    PubMed  CAS  Google Scholar 

  • Georgotas A, McCue RE, Cooper TB (1989) A placebo-controlled comparison of nortriptyline and phenelzine in maintenance therapy of elderly depressed patients. Arch Gen Psychiatry 46:783–786

    PubMed  CAS  Google Scholar 

  • Gerlach M, Youdim MB, Riederer P (1996) Pharmacology of selegiline. Neurology 47(Suppl 3):S137–145

    PubMed  CAS  Google Scholar 

  • Gilad GM, Gilad VH (1992) Polyamines in neurotrauma. Ubiquitous molecules in search of a function. Biochem Pharmacol 44:401–407

    PubMed  CAS  Google Scholar 

  • Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, Ghanayem BI (1994) Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans. Biochemistry 1994;33:1743–1752

    PubMed  CAS  Google Scholar 

  • Grace JM, Kinter MT, Macdonald TL (1994) Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N,alpha-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol. 7:286–290

    PubMed  CAS  Google Scholar 

  • Gram LF, Brosen K. (1993) Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Danish University Antidepressant Group. Br J Clin Pharmacol. 35:649–652

    PubMed  CAS  Google Scholar 

  • Gram LF, Guentert TW, Grange S, Vistisen K, Brosen K (1995) Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: A panel study. Clin Pharmacol Ther 57:670–677

    PubMed  CAS  Google Scholar 

  • Hansten PD, Horn JR (1995) Drug interactions and updates quarterly. Applied Therapeutics, Vancouver, WA

    Google Scholar 

  • Harrison W, Rabkin J, Stewart JW, McGrath PJ, Tricamo E, Quitkin F (1986) Phenelzine for chronic depression: a study of continuation treatment. J Clin Psychiatry 47:346–349

    PubMed  CAS  Google Scholar 

  • Hartter S, Dingemanse J, Baier D, Ziegler G, Hiemke C (1996) The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur Neuropsychopharmacol 6:225–230

    PubMed  CAS  Google Scholar 

  • Heinonen EH, Anntila MI, Lammintausta RAS (1994) Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 56:742–749

    PubMed  CAS  Google Scholar 

  • Himmelhoch JM, Detre T, Kupfer DJ, Swartzburg M, Byck R (1972) Treatment of previously intractable depressions with tranylcypromine and lithium. J Nerv Ment Dis 155:216–220

    PubMed  CAS  Google Scholar 

  • Himmelhoch JM, Thase ME, Mallinger AG, Houck P (1991) Tranylcypromine versus imipramine in anergic bipolar depression. Am J Psychiatry 148:910–916

    PubMed  CAS  Google Scholar 

  • Holt A, Baker GB (1995) Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptors. Prog Brain Res 106:187–197

    PubMed  CAS  Google Scholar 

  • Holt A, Alton G, Scaman CH, Loppnow GR, Szpacenko A, Svendsen I, Palcic MM (1998) Identification of the quinone cofactor in mammalian semicarbazide-sensitive amine oxidase. Biochemistry 37:4946–4957

    PubMed  CAS  Google Scholar 

  • Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248:981–987

    PubMed  CAS  Google Scholar 

  • Janes SM, Palcic MM, Scaman CH, Smith AJ, Brown DE, Dooley DM, Mure M, Klinman JP (1992) Identification of topaquinone and its consensus sequence in copper amine oxidases. Biochemistry 31:12147–12154

    PubMed  CAS  Google Scholar 

  • Jedrychowski M, Feifel N, Bieck PR, Schmidt EK (1993) Metabolism of the new MAO-A inhibitor brofaromine in poor and extensive metabolizers of debrisoquine. J Pharm Biomed Anal 11:251–255

    PubMed  CAS  Google Scholar 

  • Joffe RT, Bakish D (1994) Combined SSRI-moclobemide treatment of psychiatric illness. J Clin Psychiatry 55:24–25

    PubMed  CAS  Google Scholar 

  • Keck PE, Carter WP, Nierenberg M, Cooper TB, Potter WZ, Rothschild AJ (1991) Acute cardiovascular effects of tranylcypromine: correlation with plasma drug, metabolite, norepinephrine and MHPG levels. J Clin Psychiatry 52:250–254

    PubMed  Google Scholar 

  • Kennedy SH, Piran N, Warsh JJ, Prendergast P, Mainprize E, Whynot C, Garfinkel PE (1988) A trial of isocarboxazid in the treatment of bulimia nervosa. J Clin Psychopharmacol 8:391–396

    PubMed  CAS  Google Scholar 

  • Kennedy SH, Goldbloom DS, Ralevski E, Davis C, D'Souza JD, Lofchy J (1993) Is there a role for selective monoamine oxidase inhibitor therapy in bulimia nervosa? A placebo-controlled trial of brofaromine. J Clin Psychopharmacol 13:415–422

    PubMed  CAS  Google Scholar 

  • Kennedy SH, Eisfeld BS, Dickens SE, Bacchiochi JR, Bagby RM (2000) Antidepressant-induced sexual dysfunction during treatment with moclobemide, paroxetine, sertraline, and venlafaxine. J Clin Psychiatry 61:276–281

    PubMed  CAS  Google Scholar 

  • Kennedy SH, Lam RW, Cohen NL, Ravindran AV (2001) Clinical guidelines for the treatment of depressive disorders. IV. Medications and other biological treatments. Can J Psychiatry 46(Suppl 1):38S–58S

    PubMed  Google Scholar 

  • Klinman JP, Williams NK (2000) Whence topa? Models for the biogenesis of topaquinone in copper amine oxidases. J Mol Cat B 8:95–101

    Google Scholar 

  • Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with l-deprenyl. Mech Ageing Dev 46:237–262

    PubMed  CAS  Google Scholar 

  • Kohno K, Ohta S, Kohno K, Kumon Y, Mitani A, Sakaki S, Kataoka K (1996) Nitric oxide synthase inhibitor reduces delayed neuronal death in gerbil hippocampal CA1 neurons after transient global ischemia without reduction of brain temperature or extracellular glutamate concentration. Brain Res 738:275–280

    PubMed  CAS  Google Scholar 

  • Kruger MB, Dahl AA (1999) The efficacy and safety of moclobemide compared to clomipramine in the treatment of panic disorder. Eur Arch Psychiatry Clin Neurosci 249(Suppl 1):S19–24

    PubMed  Google Scholar 

  • Langford SD, Trent MB, Balakumaran A, Boor PJ (1999) Developmental vasculotoxicity associated with inhibition of semicarbazide-sensitive amine oxidase. Toxicol Appl Pharmacol 155:237–244

    PubMed  CAS  Google Scholar 

  • Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Nat Acad Sci USA 79:6385–6389

    PubMed  CAS  Google Scholar 

  • Lewinsohn R (1981) Amine oxidase in human blood vessels and non-vascular smooth muscle. J Pharm Pharmacol 33:569–575

    PubMed  CAS  Google Scholar 

  • Liebowitz MR (1992) Reversible MAO inhibitors in social phobia, bulimia, and other disorders. Clin Neuropharmacol 15:434A–435A

    PubMed  Google Scholar 

  • Liebowitz MR, Heimberg RG, Schneier FR, Hope DA, Davies S, Holt CS, Goetz D, Juster HR, Lin SH, Bruch MA, Marshall RD, Klein DF (1999) Cognitive-behavioral group therapy versus phenelzine in social phobia: Long-term outcome. Depress Anxiety 10:89–98

    PubMed  CAS  Google Scholar 

  • Lipper S, Murphy DL, Slater S, Buchsbaum MS (1979) Comparative behavioral effects of clorgyline and pargyline in man: a preliminary evaluation. Psychopharmacology 62:123–128

    PubMed  CAS  Google Scholar 

  • Loerch B, Graf-Morgenstern M, Hautzinger M, Schlegel S, Hain C, Sandmann J, Benkert O (1999) Randomised placebo-controlled trial of moclobemide, cognitive-behavioural therapy and their combination in panic disorder with agoraphobia. Br J Psychiatry 174:205–212

    PubMed  CAS  Google Scholar 

  • Lyles GA (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: Biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol 28:259–274

    PubMed  CAS  Google Scholar 

  • Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414

    PubMed  CAS  Google Scholar 

  • Lyles GA, Singh I (1985) Vascular smooth muscle cells: a major source of the semicarbazide-sensitive amine oxidase of the rat aorta. J Pharm Pharmacol 37:637–643

    PubMed  CAS  Google Scholar 

  • Lyles GA, Garcia-Rodriguez J, Callingham BA (1983) Inhibitory actions of hydralazine upon monoamine oxidizing enzymes in the rat. Biochem Pharmacol 32:2515–2521

    PubMed  CAS  Google Scholar 

  • Lyles GA, Holt A, Marshall CM (1990) Further studies on the metabolism of methylamine by semicarbazide-sensitive amine oxidase activities in human plasma, umbilical artery and rat aorta. J Pharm Pharmacol 42:332–338

    PubMed  CAS  Google Scholar 

  • Magyar K, Szenda B, Lengyel J, Tarezali J, Szatmary I (1998) The neuroprotective and neuronal rescue effects of (-)-deprenyl. J Neurol Transm Suppl 52:109–123

    CAS  Google Scholar 

  • Magder DM, Aleksic I, Kennedy SH (2000) Tolerability and efficacy of high-dose moclobemide alone and in combination with lithium and trazodone. J Clin Psychopharmacol 20:394–395

    PubMed  CAS  Google Scholar 

  • Malcolm DE, Yu PE, Bowen RC, O'Donovan C, Hawkes J (1990) Phenelzine and plasma vitamin B6 (pyridoxine) levels. Proceedings of the Annual Meeting of the Canadian Psychiatric Association, Toronto, Canada

    Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    PubMed  CAS  Google Scholar 

  • McDaniel KD (1986) Clinical pharmacology of monoamine oxidase inhibitors. Clin Neuropharmacol 9:207–234

    PubMed  CAS  Google Scholar 

  • McKenna KF, Baker GB, Coutts RT, Rauw G, Mozayani A, Danielson TJ (1990) Recent studies on the MAO inhibitor phenelzine and its possible metabolites. J Neural Transm 32:113–118

    CAS  Google Scholar 

  • McKenna KF, McManus DJ, Baker GB, Coutts RT (1994) Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: effects on GABAergic function. J Neural Transm Suppl 41:115–122

    PubMed  CAS  Google Scholar 

  • McManus DJ, Baker GB, Martin IL, Greenshaw AJ, McKenna KF (1992) Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-T activity in rat brain. Biochem Pharmacol 43:2486–2489

    PubMed  CAS  Google Scholar 

  • Molderings G (1997) Imidazoline receptors: Basic knowledge, recent advances and future prospects for therapy and diagnosis. Drug Fut 22:757–772

    CAS  Google Scholar 

  • Molderings GJ, Gothert M (1999) Imidazoline binding sites and receptors in cardiovascular tissue. Gen Pharmacol 32:17–22

    PubMed  CAS  Google Scholar 

  • Morgan DM (1985) Polyamine oxidases. Biochem Soc Trans 13:322–326

    PubMed  CAS  Google Scholar 

  • Mozayani A, Coutts RT, Danielson TJ, Baker GB (1988) Metabolic acetylation of phenelzine in rats. Res Commun Chem Pathol Pharmacol 62:397–406

    PubMed  CAS  Google Scholar 

  • Medical Research Council by its Clinical Psychiatry Committee (1965) Clinical Trial of the treatment of depressive illness. Br Med J 1:881–886

    Google Scholar 

  • Murphy DL, Kalin NH (1980) Biological and behavioral consequences of alterations in monoamine oxidase activity. Schizophr Bull 6:355–367

    PubMed  CAS  Google Scholar 

  • Musgrave IF, Badoer E (1999) Harmane produces hypotension following microinjection into the RVLM: possible role of I1-imidazoline receptors. Br J Pharmacol 129:1057–1059

    Google Scholar 

  • Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow CW (1997a) L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem 68:33–39

    PubMed  CAS  Google Scholar 

  • Mytilineou C, Radcliffe PM, Olanow CW (1997b) L-(-)-desmethylselegiline, a metabolite of selegiline [L-(-)-deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J Neurochem. 68:434–436

    PubMed  CAS  Google Scholar 

  • Newburn G, Edwards R, Thomas H, Collier J, Fox K, Collins C (1999) Moclobemide in the treatment of major depressive disorder (DSM-3) following traumatic brain injury. Brain Inj 13:637–642

    PubMed  CAS  Google Scholar 

  • Olanow CW, Myllyla VV, Sotaniemi KA, Larsen JP, Palhagen S, Przuntek H, Heinonen EH, Kilkku O, Lammintausta R, Maki-Ikola O, Rinne UK (1998) Effect of selegiline on mortality in patients with Parkinson's disease: A meta-analysis. Neurology 51:825–830

    PubMed  CAS  Google Scholar 

  • Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpcio Boronat M, Trullas R, Villarroel A, Lerma J, Garcia-Sevilla JA (1999) Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127:1317–1326

    PubMed  CAS  Google Scholar 

  • Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M, Garcia-Sevilla JA (1997) Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liver. Br J Pharmacol 121:901–912

    PubMed  CAS  Google Scholar 

  • Pande AC, Birkett M, Fechner-Bates S, Haskett RF, Greden JF (1996) Fluoxetine versus phenelzine in atypical depression. Biol Psychiatry 40:1017–1020

    PubMed  CAS  Google Scholar 

  • Parent M, Habib MK, Baker GB (2000) Time-dependent changes in brain monoamine oxidase activity and in brain levels of monoamines and amino acids following acute administration of the antidepressant/antipanic drug phenelzine. Biochem Pharmacol 59:1253–1263

    PubMed  CAS  Google Scholar 

  • Parkinson A (1996) Biotransformation of xenobiotics. In: Klassen CD (ed) Casarett and Doull's toxicology: the basic science of poisons, fifth edition. McGraw-Hill, New York, pp 119–186

    Google Scholar 

  • Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 328:176–183

    Google Scholar 

  • Paslawski T, Treit D, Baker GB, George M, Coutts RT (1996) The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA. Psychopharmacol 127:19–24

    CAS  Google Scholar 

  • Paslawski T, Knaus E, Iqbal N, Coutts RT, Baker GB (2001) β-Phenylethylidenehydrazine, a novel inhibitor of GABA transaminase. Drug Devel Res 54:35–39

    CAS  Google Scholar 

  • Paterson IA, Tatton WG (1998) Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol 42:312–315

    PubMed  CAS  Google Scholar 

  • Paterson IA, Juorio AV, Boulton AA (1990) 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem 55:1827–1837

    PubMed  CAS  Google Scholar 

  • Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243: C212–C221

    PubMed  CAS  Google Scholar 

  • Pierre JM, Gitlin MJ. (2000) Bupropion-tranylcypromine combination for treatment-refractory depression. J Clin Psychiatry 61:450–451

    PubMed  CAS  Google Scholar 

  • Piletz JE, Halaris A, Ernsberger PR (1994) Psychopharmacology of imidazoline and α2-adrenergic receptors: implications for depression. Crit Rev Neurobiol 9:29–66

    PubMed  CAS  Google Scholar 

  • Piletz JE, Halaris A, Nelson J, Qu Y, Bari M (1996a) Platelet I1-imidazoline binding sites are elevated in depression but not generalized anxiety disorder. J Psychiatr Res 30:147–168

    PubMed  CAS  Google Scholar 

  • Piletz JE, Halaris A, Chikkala D, Qu Y (1996b) Platelet I1-imidazoline binding sites are decreased by two dissimilar antidepressant agents in depressed patients. J Psychiatr Res 30:169–184

    PubMed  CAS  Google Scholar 

  • Popov N, Matthies H (1969) Some effects of monoamine oxidase inhibitors on the metabolism of γ-aminobutyric acid in rat brain. J Neurochem 16:899–907

    PubMed  CAS  Google Scholar 

  • Poulin R, Bonneau M-J (2000) Spermine oxidation leads to necrosis with plasma membrane phosphatidylserine redistribution in mouse leukemia cells. Exp Cell Res 259:23–24

    PubMed  Google Scholar 

  • Precious E, Gunn CE, Lyles GA (1988) Deamination of methylamine by semicarbazidesensitive amine oxidase in human umbilical artery and rat aorta. Biochem Pharmacol 37:707–713

    PubMed  CAS  Google Scholar 

  • Price RE, Luscombe S, Tyacke RJ, Nutt DJ, Hudson AL (1999) Affinities of β-carbolines for I2-binding sites in rabbit brain membranes. Br J Pharmacol 127(Suppl): 57P

    Google Scholar 

  • Quitkin FM, McGrath PJ, Stewart JW, Harrison W, Tricamo E, Wager SG, Ocepek-Welikson K, Nunes E, Rabkin JG, Klein DF (1990) Atypical depression, panic attacks, and response to imipramine and phenelzine. A replication. Arch Gen Psychiatry 47:935–941

    PubMed  CAS  Google Scholar 

  • Quitkin F, Rothschild R, Stewart JW, McGrath PJ, Harrison WM (1994) Atypical depression: A unipolar depressive subtype with preferential response to MAOIs (Columbia University Depressive Studies). In: Kennedy SH (ed) Clinical advances in monoamine oxidase inhibitor therapies, vol 43. American Psychiatric Press, Washington, DC, pp 181–203

    Google Scholar 

  • Raddatz R, Lanier SM (1997) Relationship between imidazoline/guanidinium receptive sites and monoamine oxidase A and B. Neurochem Int 30:109–117

    PubMed  CAS  Google Scholar 

  • Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 270:27961–27968

    PubMed  CAS  Google Scholar 

  • Raimondi L, Pirisino R, Ignesti G, Capecchi S, Banchelli G, Buffoni F (1991) Semicarbazide-sensitive amine oxidase activity (SSAO) of rat epididymal white adipose tissue. Biochem Pharmacol 41:467–470

    PubMed  CAS  Google Scholar 

  • Ravaris CL, Nies A, Robinson DS, Ives JO, Lamborn KR, Korson L (1976) A multipledose, controlled study of phenelzine in depression-anxiety states. Arch Gen Psychiatry 33:347–350

    PubMed  CAS  Google Scholar 

  • Renouard A, Widdowson PS, Cordi A (1993) [3H]-idazoxan binding to rabbit cerebral cortex recognizes multiple imidazoline I2-type receptors: pharmacological characterization and relationship to monoamine oxidase. Br J Pharmacol 109:625–631

    PubMed  CAS  Google Scholar 

  • Robie T (1958) Marsilid in depression. Am J Psychiatry 114:936

    PubMed  CAS  Google Scholar 

  • Robinson DS, Campbell IC, Walker M, Statham NH, Lovenberg W, Murphy DL (1979) Effects of chronic monoamine oxidase inhibitor treatment on biogenic amine metabolism in rat brain. Neuropharmacol 18:771–776

    CAS  Google Scholar 

  • Robinson DS, Cooper TB, Jindal SP, Corcella J, Lutz T (1985) Metabolism and pharmacokinetics of phenelzine: Lack of evidence for acetylation pathway in humans. J Clin Psychopharmacol 5:333–337

    PubMed  CAS  Google Scholar 

  • Robinson DS, Lerfald SC, Bennett B, Laux D, Devereaux E, Kayser A, Corcella J, Albright D (1991) Continuation and maintenance treatment of major depression with the monoamine oxidase inhibitor phenelzine: A double-blind placebo-controlled discontinuation study. Psychopharmacol Bull 27:31–39

    PubMed  CAS  Google Scholar 

  • Salminen TA, Smith DJ, Jalkanen S, Johnson MS (1998) Structural model of the catalytic domain of an enzyme with cell adhesion activity: Human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. Protein Eng 11:1195–1204

    PubMed  CAS  Google Scholar 

  • Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol 91:466–474

    PubMed  CAS  Google Scholar 

  • Segal JA, Skolnick P (2000) Spermine-induced toxicity in cerebellar granule neurons is independent of its actions at NMDA receptors. J Neurochem 74:60–69

    PubMed  CAS  Google Scholar 

  • Seiler N (1995) Polyamine oxidase, properties and functions. Prog Brain Res 106:333–344

    PubMed  CAS  Google Scholar 

  • Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315:19–30

    PubMed  CAS  Google Scholar 

  • Sharma RP, Janicak PG, Javaid JI, Pandey GN, Gierl B, Davis JM (1990) Platelet MAO inhibition, urinary MHPG, and leukocyte beta-adrenergic receptors in depressed patients treated with phenelzine. Am J Psychiatry 147:1318–1321

    PubMed  CAS  Google Scholar 

  • Sherry RL, Rauw G, McKenna KF, Paetsch PR, Coutts RT, Baker GB (2000) Failure to detect amphetamine or 1-amino-3-phenylpropane in humans or rats receiving tranylcypromine. J Affect Disord 61:23–29

    PubMed  CAS  Google Scholar 

  • Shulman KI, Tailor SA, Walker SE, Gardner DM (1997) Tap (draft) beer and monoamine oxidase inhibitor dietary restrictions. Can J Psychiatry 42:310–312

    PubMed  CAS  Google Scholar 

  • Shulman KI, Walker SE (1999) Refining the MAOI diet: Tyramine content of pizzas and soy products. J Clin Psychiatry 60:191–193

    PubMed  CAS  Google Scholar 

  • Sims KB, Ozelius L, Corey T, Rinehart WB, Liberfarb R, Haines J, Chen WJ, Norio R, Sankila E, de la Chapelle A, et al. (1989) Norrie disease gene is distinct from the monoamine oxidase genes. Am J Hum Genet 45:424–434

    PubMed  CAS  Google Scholar 

  • Smith DF (1980) Tranylcypromine stereoisomers, monoaminergic transmission and behaviour: a review. Pharmacopsychiatry 13:130–136

    CAS  Google Scholar 

  • Smith SE, Lambourn J, Tyrer PF (1980) Antipryine elimination by patients under treatment with monoamine oxidase inhibitors. Br J Clin Pharmacol 9:21–25

    PubMed  CAS  Google Scholar 

  • Sogaard J, Lane R, Latimer P, Behnke K, Christiansen PE, Nielsen B, Ravindran AV, Reesal RT, Goodwin DP (1999) A 12-week study comparing moclobemide and sertraline in the treatment of outpatients with atypical depression. J Psychopharmacol 13:406–414

    PubMed  CAS  Google Scholar 

  • Stoll AL, Haura G (2000) Tranylcypromine plus risperidone for treatment-refractory major depression. J Clin Psychopharmacol 20:495–496

    PubMed  CAS  Google Scholar 

  • Tanay VA-MI, Parent MB, Wong JTF, Paslawski T, Martin IL, Baker GB (2001) Effects of the antidepressant/antipanic drug phenelzine on alanine and alanine transaminase in rat brain. Cell Mol Neurobiol 21:325–339

    PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman RM (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47:S171–183

    PubMed  CAS  Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurons: A new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30:666–672

    PubMed  CAS  Google Scholar 

  • Tesson F, Limon-Boulez I, Urban P, Puype M, Vandekerckhove J, Coupry I, Pompon D, Parini A (1995) Localization of I2-imidazoline binding sites on monoamine oxidase. J Biol Chem 270:9856–9861

    PubMed  CAS  Google Scholar 

  • Thase ME, Sachs GS (2000) Bipolar depression: pharmacotherapy and related therapeutic strategies. Biol Psychiatry 48:558–572

    PubMed  CAS  Google Scholar 

  • Thase ME, Trivedi MH, Rush AJ (1995) MAOIs in the contemporary treatment of depression. Neuropsychopharmacology 12:185–219

    PubMed  CAS  Google Scholar 

  • Thomas T, McLendon C, Thomas G (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels. Neuroreport 9:2595–2600

    PubMed  CAS  Google Scholar 

  • Tiller JW, Bouwer C, Behnke K (1999) Moclobemide and fluoxetine for panic disorder. International Panic Disorder Study Group. Eur Arch Psychiatry Clin Neurosci 249:S7–10

    PubMed  Google Scholar 

  • Tipton KF, Spires IPC (1971) Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem Pharmacol 21:268–270

    Google Scholar 

  • Todd KG, Baker GB (1995) GABA-elevating effects of the antidepressant/antipanic drug phenelzine in brain: effects of pretreatment with tranylcypromine, (-)-deprenyl and clorgyline. J Affect Disord 35:125–129

    PubMed  CAS  Google Scholar 

  • Versiani M, Nardi AE, Mundim FD, Alves AB, Liebowitz MR, Amrein R (1992) Pharmacotherapy of social phobia. A controlled study with moclobemide and phenelzine. Br J Psychiatry 161:353–360

    PubMed  CAS  Google Scholar 

  • Volz HP, Gleiter CH, Moller HJ (1997) Brofaromine versus imipramine in-patients with major depression: A controlled trial. J Affect Disord 44:91–99

    PubMed  CAS  Google Scholar 

  • Waldmeier P, Amrein R, Schmid-Burgk W (1994) Pharmacology and pharmacokinetics of brofaromine and moclobemide in animals and humans. In: Kennedy SH (ed) Clinical advances in monoamine oxidase inhibitor therapies, vol 43. American Psychiatric Press, Washington, DC, pp 33–59

    Google Scholar 

  • Walsh BT, Gladis M, Roose SP, Stewart JW, Stetner F, Glassman AH (1988) Phenelzine vs placebo in 50 patients with bulimia. Arch Gen Psychiatry 45:471–475

    PubMed  CAS  Google Scholar 

  • Westenberg HG (1996) Developments in the drug treatment of panic disorder: What is the place of the selective serotonin reuptake inhibitors? J Affect Disord 40:85–93

    PubMed  CAS  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neurosci 25:439–456

    CAS  Google Scholar 

  • White K, Simpson G (1981) Combined MAOI-tricyclic antidepressant treatment: A reevaluation. J Clin Psychopharmacol 1:264–282

    PubMed  CAS  Google Scholar 

  • Wong JTF, Baker GB, Coutts RT, Dewhurst WG (1990) Long-lasting elevation of alanine in brain produce by the antidepressant phenelzine. Brain Res Bull 25:179–181

    PubMed  CAS  Google Scholar 

  • Wu RM, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243:241–247

    PubMed  CAS  Google Scholar 

  • Xu L, Ma J, Seigel GM, Ma J (1999) L-deprenyl, blocking apoptosis and regulating gene expression in cultured retinal neurons. Biochem Pharmacol 58:1183–1190

    PubMed  CAS  Google Scholar 

  • Youdim MB, Aronson JK, Blau K, Green AR, Grahame-Smith DG (1979) Tranylcypromine ('Parnate') overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasma. Psychol Med 9:377–382

    PubMed  CAS  Google Scholar 

  • Yu PH (2000) Semicarbazide-sensitive amine oxidase and mortality in chronic heart failure. Eur Heart J 21:1812–1814

    PubMed  CAS  Google Scholar 

  • Yu PH, Boulton M (1992) A comparison of the effect of brofaromine, phenelzine and tranylcypromine on the activities of some enzymes involved in the metabolism of different neurotransmitters, Res Commun Chem Path Pharmacol 16:141–153

    Google Scholar 

  • Yu PH, Tipton KF (1989) Deuterium isotope effect of phenelzine on the inhibition of rat liver mitochondrial monoamine oxidase activity. Biochem Pharmacol 38:4245–4251

    PubMed  CAS  Google Scholar 

  • Yu PH, Davis BA, Durden DA (1991) Enzymatic N-methylation of phenelzine catalyzed by methyltransferases from adrenal and other tissues. Drug Metab Dispos 19:830–834

    PubMed  CAS  Google Scholar 

  • Zhang X, Yu PH (1995) Depletion of NOS activity in the rat dentate gyrus neurons by DSP-4 and protection by deprenyl. Brain Res Bull 38:307–311

    PubMed  CAS  Google Scholar 

  • Zhang X, Zuo DM, Yu PH (1995) Neuroprotection by R(-)-deprenyl and N-2-hexyl-N-methylpropargylamine on DSP-4, a neurotoxin, induced degeneration of noradrenergic neurons in the rat locus coeruleus. Neurosci Lett 186:45–48

    PubMed  CAS  Google Scholar 

  • Zubieta JK, Pande AC, Demitrack MA (1999) Two year follow-up of atypical depression. J Psychiatr Res 33:23–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kennedy, S.H., Holt, A., Baker, G.B. (2004). Monoamine Oxidase Inhibitors. In: Preskorn, S.H., Feighner, J.P., Stanga, C.Y., Ross, R. (eds) Antidepressants: Past, Present and Future. Handbook of Experimental Pharmacology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18500-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18500-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62135-2

  • Online ISBN: 978-3-642-18500-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics