Skip to main content

New Hypotheses to Guide Future Antidepressant Drug Development

  • Chapter
Antidepressants: Past, Present and Future

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 157))

Abstract

The emergence of molecular neurobiology is rapidly changing the traditional focus of antidepressant drug research with emphasis on effector sites beyond the receptors. This switch in emphasis is leading to new conceptual and methodological approaches to understanding the mode of action of antidepressants. Events beyond the receptors—intracellular signal transduction pathways and regulation of programs of gene expression—are promising new and exciting targets for antidepressants. A short historical review of the evolution of hypotheses (e.g., monoamine, b-adrenoceptor down-regulation, and the 5-HT/NE/ glucocorticoid link) concerning the mode of action of antidepressants is first presented. The chapter then presents an overview of new hypotheses concerning the mode of action of antidepressants and discusses the role of N-methyl-D-aspartate (NMDA) receptors in antidepressant action and the possible role of corticotropin releasing factor (CRF) antagonists and substance P receptor antagonists as antidepressants. Neurotransmitter-induced intracellular processes and the importance of crosstalk at the level of protein kinases are described. The chapter than discusses protein kinase C-related processes, G proteins, and transcription factors as potential targets for antidepressants and considers the convergence of neurotransmitter signals beyond the receptors at the level of protein kinase-mediated phosphorylation. To discover the next generation of antidepressants, two avenues of interrelated investigations seem promising: (1) a more rigorous elucidation of the molecular psychopathology of affective disorders and the development of animal models of depression with greater disease validity and (2) the development of new methodology to explore mechanisms beyond the receptors and second messengers in animal models of depression and in patients with affective disorders. Possible models of depression that may have increased disease validity are described. The chapter concludes with a discussion of how programs of gene expression are likely to affect antidepressant drug development. Differentially expressed genes and their protein products can be used as novel drug targets for the development of the next generation of antidepressants, which hopefully will meet the yet unmet criteria of greater efficacy, shorter onset of therapeutic action, and efficacy in therapy-resistant depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth K, Smith SE, Zetterstrom TS, Pei Q, Franklin M, Sharp T (1998) Effect of anti-depressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat. Psychopharmacology (Berl) 140:470–477

    Article  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical Manual of Mental Disorders: 4th Ed., American Psychiatric Association, Washington, D.C.

    Google Scholar 

  • Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrich P, Karin M (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739

    Article  PubMed  CAS  Google Scholar 

  • Antoni FA, Palkovits M, Makara GB, Linton EA, Lowry PJ, Kiss JZ (1983) Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundibular tract. Neuroendocrinology 36:415–423

    Article  PubMed  CAS  Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    Article  PubMed  CAS  Google Scholar 

  • Assie MB, Broadhurst A, Briley M (1988) Is down-regulation of b adrenoceptors necessary for antidepressant activity? In: Briley M, Fillion G (eds) New concepts in depression. MacMillan Press, London, pp 161–166

    Google Scholar 

  • Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47:305–313

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G (1992a) Interaction of antibipolar and antidepressant treatments with receptor-coupled G proteins. Pharmacopsychiatry 25:44–50

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G (1992b) The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biol Psychiatry 31:435–459

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Nechamkin Y, Barki-Harrington L, Roitman G, Schreiber G (1997a) Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. J Affect Disord 43:85–93

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Nechamkin Y, Roitman G, Schreiber G (1997b) Reduced G protein functions and immunoreactive levels in mononuclear leukocytes of patients with depression. Am J Psychiatry 154:211–217

    PubMed  CAS  Google Scholar 

  • Avissar S, Nechamkin Y, Roitman G, Schreiber G (1998) Dynamics of ECT normalization of low G protein function and immunoreactivity in mononuclear leukocytes of patients with major depression. Am J Psychiatry 155:666–671

    PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G, Nechamkin Y, Neuhaus I, Lam GK, Schwartz P, Turner E, Matthews J, Naim S, Rosenthal NE (1999) The effects of seasons and light therapy on G protein levels in mononuclear leukocytes of patients with seasonal affective disorder. Arch Gen Psychiatry 56:178–183

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues. Science 133:383–384

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SP, Kung LS, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    Article  PubMed  CAS  Google Scholar 

  • Barden N, Reul JMHM, Holsboer F (1995) Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? TINS 18:6–11

    PubMed  CAS  Google Scholar 

  • Benca RM, Obermeyer WH, Thisted RA, Gillin C (1992) Sleep and psychiatric disorders: A meta-analysis. Arch Gen Psychiatry 49:651–668

    Article  PubMed  CAS  Google Scholar 

  • Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 83:2797–2801

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Rieman D (1993) REM sleep in depression: An overview. J Sleep Res 2:211–223

    Article  PubMed  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979a) Adrenergic serotonergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exp Ther 209:256–261

    PubMed  CAS  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979b) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278:464–466

    Article  PubMed  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bernardini R, Chiarenza A, Kamilaris TC, Renaud N, Lempereur L, Demitrack M, Gold PW, Chrousos GP (1994) In vivo and in vitro effects of arginine-vasopressin receptor antagonists on the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology 60:503–508

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) G protein in signal transduction. Ann Rev Pharmacol Toxicol 30:675–705

    Article  CAS  Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biochim Biophys Acta 1031:163–224

    Article  PubMed  CAS  Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221:303–308

    PubMed  CAS  Google Scholar 

  • Blakely RD, Ramamoorthy S, Qian Y, Schroeter SR, Bradley ChC (1997). Regulation of antidepressant-sensitive serotonin transporters. In: Reith MEA (ed) Neurotransmitter transporters: Structure, function and regulation. Humana Press, Totowas, NJ, pp 29–72

    Google Scholar 

  • Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1-and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 62:3106–3113

    Google Scholar 

  • Boyer PA, Skolnick P, Fossom LH (1998) Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 10:219–233

    Article  PubMed  CAS  Google Scholar 

  • Brady LS (1994) Stress, antidepressant drugs, and the locus coeruleus. Brain Res Bull 35:545–556

    Article  PubMed  CAS  Google Scholar 

  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991) Long-term antidepressant administration alters corticotropin releasing hormone, tyrosine hydroxylase and mineralocorticoid receptor gene expression in rat brain. J Clin Invest 87:831–837

    Article  PubMed  CAS  Google Scholar 

  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ (1992) The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: Therapeutic implications. Brain Res 572:117–125

    Article  PubMed  CAS  Google Scholar 

  • Briley M, Fillion G (eds) (1988) New concepts in depression. MacMillan Press, London

    Google Scholar 

  • Briley M, Montgomery ST (eds) (1998) Antidepressant therapy at the dawn of the third millennium. Martin, Dunitz, Ltd., London

    Google Scholar 

  • Brandoli C, Sanna A, De Bernardi MA, Follesa P, Brooker G, Mocchetti I (1998) Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar granule cells. J Neurosci 18:7953–7961

    PubMed  CAS  Google Scholar 

  • Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, Nemeroff CB, Charney DS (1997) Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 154:624–629

    PubMed  CAS  Google Scholar 

  • Budziszewska B, Siwanowicz J, Przegalinski E (1994) The effect of chronic treatment with antidepressant drugs on the corticosteroid receptor levels in the rat hippocampus. Pol J Pharmacol 46:147–152

    PubMed  CAS  Google Scholar 

  • Bunney WE, Davis JM (1965) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13:483–494

    Article  PubMed  CAS  Google Scholar 

  • Burnstein KL, Cidlowsky JA (1989) Regulation of gene expression by glucocorticoids. Ann Rev Physiol 51:683–699

    Article  CAS  Google Scholar 

  • Calogero AE, Galluci WT, Tomai P, Loriaux DL, Chrousos GP, Gold P (1988a) Inhibition of corticotropin releasing hormone secretion by GABAA and GABAB receptor action in vitro: Clinical implications. In: D'Agata R, Chrousos GP (eds) Recent advances in adrenal regulation and function. Raven, New York, pp 279–284

    Google Scholar 

  • Calogero AE, Galluci WT, Chrousos GP, Golg PW (1988b) Catecholamine effects upon rat hypothalamic corticotropin-releasing hormone secretion in vitro. J Clin Invest 82:839–846

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Fuxe K, Ungerstedt U (1968) The effect of imipramine on central 5-hydroxytryptamine neurons. J Pharmacy Pharmacol 20:150–151

    Article  CAS  Google Scholar 

  • Cheeta S, Ruigt G, van Proosdij J, Willner P (1997) Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41:419–27

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Rasenick MM (1995) Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. J Pharmacol Exp Ther 275:509–517

    PubMed  CAS  Google Scholar 

  • Coleman DE, Sprang SR. How G proteins work: a continuing story. Trends Biochem Sci. 1996;21:41–44

    PubMed  CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Racagni G (eds) (1982a) Typical and atypical antidepressants: Molecular mechanisms. Adv Biochem Psychopharmacol vol 31

    Google Scholar 

  • Costa E, Racagni G (eds) (1982b) Typical and atypical antidepressants: Clinical practice. Adv Biochem Psychopharmacol vol 32

    Google Scholar 

  • Curtis AL, Valentino RJ (1994) Corticotropin-releasing factor neurotransmission in locus coeruleus: A possible site of antidepressant action. Brain Res Bull 35:581–587

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett W, Creveling CR, Cantacuzene D, Kirk KL (1980) Fluoroepinephrines: Specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating system in rat slices. J Pharmacol Exp Ther 212:382–389

    PubMed  CAS  Google Scholar 

  • Deakin JFW (1991) The clinical relevance of animal models of depression. In: Willner P (ed) Behavioural models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 157–174

    Google Scholar 

  • Decollogne S, Tomas A, Lecerf C, Adamowicz E, Seman M (1997) NMDA receptor complex blockade by oral administration of magnesium: Comparison with MK-801. Pharmacol Biochem Behav 58:261–268

    Article  PubMed  CAS  Google Scholar 

  • Delbende C, Contesse V, Mocaer E, Kamoun A, Vaudry H (1991) The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol 202:391–396

    Article  PubMed  CAS  Google Scholar 

  • Döbbeling U, Berchtold MW (1996) Down-regulation of the protein kinase A pathway by activators of protein kinase C and intracellular Ca2+ in fibroblast cells. FEBS Letters 391:131–133

    Article  PubMed  Google Scholar 

  • Done CJG, Sharp T (1992) Evidence that 5HT2 receptor activation decreases noradrenaline release in rat hippocampus in vivo. Br J Pharmacol 107:240–245

    Article  PubMed  CAS  Google Scholar 

  • Duman R (2001). Regulation of neural plasticity by stress and antidepressant treatment. In: Briley M, Sulser F (eds) Molecular genetics of mental disorders. Martin Dunitz, London, pp 171–198

    Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1989) Chronic antidepressant regulation of GS ÎĽ and cyclic AMP-dependent protein kinase. Pharmacologist 31:182

    Google Scholar 

  • Duman RS, Nibuya M, Vaidya VA (1997) A role for CREB in antidepressant action. In: Skolnick P (ed) Antidepressants: New pharmacological strategies. Humana Press, Totowa, NJ, pp 173–194

    Google Scholar 

  • Dunn AJ, Berridge CW (1990a) Is corticotropin-releasing factor a mediator of stress responses? Ann NY Acad Sci 579:183–191

    Article  PubMed  CAS  Google Scholar 

  • Dunn AJ, Berridge CW (1990b) Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Res Rev 15:71–100

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi Y, Pandey SC, Pandey GN (1995) Effect of chronic administration of antidepressants on the levels of various subtypes of G-proteins in rat brain. Soc Neurosci 21:731.8 (Abstract)

    Google Scholar 

  • Dwivedi Y, Roberts R, Conley RC, Tamminga C, Pandey GN (2000) Protein kinase A in the post mortem brain of suicide victims. Biol. Psychiatry 47:75S (Abstract)

    Article  Google Scholar 

  • Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J (1997) Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. J Neural Transm 104:515–524

    Article  PubMed  CAS  Google Scholar 

  • Edwards E, Muneyyrci J, Van Houten P, Michel C, Henn FA (1990) The effect of learned helplessness breeding on opioid mechanisms. Am Coll Neuropsychopharmacol 29:222 (Abstract)

    Google Scholar 

  • Edwards E, Harkins K, Henn FA (1991a) Learned helplessness modulation of 3H-paroxetine binding in the rat brain. J Neurochem 56:1581–1586

    Article  PubMed  CAS  Google Scholar 

  • Edwards E, Harkins K, Wright G, Henn FA (1991b) 5HT1b Receptors in an animal model of depression. Neuropharmacology 30:101–105

    Article  PubMed  CAS  Google Scholar 

  • Eiring A, Sulser F (1997) An increased synaptic availability of norepinephrine is not essential for antidepressant induced increases in hippocampal GR mRNA. J Neural Transm 104:1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Eiring A, Manier DH, Bieck PR, Howells RD, Sulser F (1992) The’ Serotonin/ Norepinephrine/ Glucocorticoid Link’ beyond the beta adrenoceptors. Molec Brain Res 16:211–214

    Article  PubMed  CAS  Google Scholar 

  • Emanghoreishi M, Warsh JJ, Sibony D, Li PP (1996) Lack of effect of chronic antidepressant treatment on Gs and Gi α-subunit protein and mRNA levels in the rat cerebral cortex. Neuropsychopharmacol 15:281–287

    Article  Google Scholar 

  • Ferris RM, Cooper BR (1993) Mechanism of antidepressant activity of bupropion. J Clin Psychiatry 11:1–14

    Google Scholar 

  • Foulkes NS, Laoide BM, Schlotter F, Sassone-Corsi P (1991) Transcriptional antagonist cAMP-responsive element modulator down-regulates c-fos cAMP-induced expression. Proc Natl Acad Sci USA 88:5448–5452

    Article  PubMed  CAS  Google Scholar 

  • Frank DA, Greenberg ME (1994) CREB: A mediator of long-term memory from molluscs to mammals. Cell 79:5–8

    Article  PubMed  CAS  Google Scholar 

  • Frazer A (1997) Pharmacology of antidepressants. J Clin Psychopharmacol 17:2S–18S

    Article  PubMed  CAS  Google Scholar 

  • Frechilla D, Otano A, Del Rio J (1998) Effect of chronic antidepressant treatment on transcription factor binding activity in rat hippocampus and frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 22:787–802

    Article  PubMed  CAS  Google Scholar 

  • Freedman NJ, Liggett SB, Drachman DE, Caron MG, Lefkowitz RJ (1995) Phosphorylation and desensitization of the human b1-adrenergic receptor. J Biol Chem 270:17953–17961

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Yocca FD, Cooper TD (1984) Antidepressant drugs with varying pharmacological profiles alter rat pineal beta adrenergic mediated function. J Pharmacol Exp Ther 228:545–550

    PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins in signal transduction. Ann Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680

    Article  PubMed  CAS  Google Scholar 

  • Haddjeri N, Blier P, de Montigny C (1996) Effect of the alpha-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain. J Pharmacol Exp Ther 277:861–871

    PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    PubMed  CAS  Google Scholar 

  • Harfstrand A, Fuxe K, Cintra A, Agnati LF, Zim I, Wirkstrom AC, Okret S, Yu ZL, Goldstein M, Steinbusch H, Verhofstadt A, Gustafsson JA (1986) Demonstration of glucocorticoid receptor immunoreactivity in monoamine neurons of the rat brain. Proc Nat Acad Sci USA 83:9779–9783

    Article  PubMed  CAS  Google Scholar 

  • Harrelson AL, Rosterre W, McEwen BS (1987) Adrenocortical steroids modify neuro-transmitter stimulated cyclic AMP accumulation in the hippocampus and limbic brain of the rat. J Neurochem 48:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Heese K, Otten U, Mathivet P, Raiteri M, Marescaux C, Bernasconi R (2000) GabaB receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NCG) and brain-derived neurotophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. Neuropharmacology 39:449–462

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs SC, Menzaghi FM, Pich EM, Baldwin HA, Rassnick S, Britton KT, Koob GF (1994) Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology 11:179–185

    Article  PubMed  CAS  Google Scholar 

  • Henn FA (1989) Animal models. In: Mann JJ (ed) Models of depressive disorders. Plenum, New York, pp 93–107

    Chapter  Google Scholar 

  • Heydorn WE, Brunswick FT, Frazer A (1982) Effect of treatment of rats with antidepressants on melatonin concentrations in the pineal gland and serum. J Pharmacol Exp Ther 222:534–543

    PubMed  CAS  Google Scholar 

  • Higuchi H, Yang H-YT, Sobol S (1988) Rat neuropeptide Y precursor gene expression. J Biol Chem 262:6288–6295

    Google Scholar 

  • Hoeffler JP, Deutsch PJ, Lin J, Habener JF (1989) Distinct adenosine 3’,5’-monophosphate and phorbolester-responsive signal transduction pathways converge at the level of transcriptional activation by the interaction of DNA-binding proteins. Molec Endocrinol 3:868–880

    Article  CAS  Google Scholar 

  • Hokfelt T, Johansson O, Holets V, Meister B, Melander T (1987) Distribution of neuropeptides with special reference to their coexistence with classical transmitters. In: Meltzer HY (ed) Psychopharmacology: The third generation of progress. Raven Press, New York, pp 401–416

    Google Scholar 

  • Holsboer F, Spengler D, Heuser I (1992) The role of corticotropin-releasing hormone in the pathogenesis of Cushing's disease, anorexia nervosa, alcoholism, affective disorders and dementia. Prog Brain Res 93:385–417

    Article  PubMed  CAS  Google Scholar 

  • Holzbauer M, Vogt M (1956) Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J Neurochem 1:8–11

    Article  PubMed  CAS  Google Scholar 

  • Honegger UE, Roscher AA, Wiesmann UN (1983) Evidence for lysosomotropic action of desipramine in cultured human fibroblasts. J Pharmacol Exp Ther 225:436–441

    PubMed  CAS  Google Scholar 

  • Honkaniemi J, Pelto-Huikko M, Rechardt L, Isola J, Lammi A, Fuxe K, Gustaffson J, Wikstrom AC, Hokfelt T (1992) Colocalization of peptide and glucocorticoid receptor immunoreactivity in rat central amygdaloid nucleus. Neuroendocrinol 55:451–459

    Article  CAS  Google Scholar 

  • Hosoda K, Duman RS (1993) Regulation of b1-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 69:1335–1343

    Article  Google Scholar 

  • Huang N-Y, Layer RT, Skolnick P (1997) Is an adaptation of NMDA receptors an obligatory step in antidepressant action? In: Skolnick P (ed) Antidepressants: New pharmacological strategies. Humana Press, Totowa, NJ, pp 125–143

    Google Scholar 

  • Huff RA, Vaughan RA, Kuhar MJ, Uhl GR (1997) Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J Neurochem 68:225–232

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Karin M (1992)The regulation of transcription by phosphorylation. Cell 70:375–387

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Nestler EJ (1993) The molecular foundations of psychiatry. American Psychiatric Press, Washington DC

    Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Mann JJ (1992) Role of the dopaminergic system in depression. Biol Psychiatry 32:1–17

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Bergstrom DA (1983) Electroconvulsive shock: Effects on bichemical correlates of neurotransmitter receptors in the brain. Neuropharmacology 22:401–406

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Stockmeier CA (1986) Effects of electroconvulsive shock and serotonin axon lesions on beta-adrenergic and serotonin-2 receptors in rat brain. Ann NY Acad Sci 462:76–90

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Cascio CS, Bergstrom DA, Butler JA, Iaradola P (1981a) Electroconvulsive shock and reserpine: Effects on b-adrenergic receptors in rat brain. J Neurochem 37:830–836

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Cascio CS, Butler JA, Kurtzke RN (1981b) Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur J Pharmacol 69:515–518

    Article  PubMed  CAS  Google Scholar 

  • Kendall DA, Nahorski SR (1985) 5-hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortical slices: Pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479

    PubMed  CAS  Google Scholar 

  • Kitayama I, Janson AM, Cintra A, Fuxe K, Agnati LF, Ogren SO, Harfstrand A, Eneroth P, Gustafsson JA (1988) Effects of chronic imipramine treatment on glucocorticoid receptor immunoreactivity in various regions of the rat brain. J Neural Transm 73:191–203

    Article  PubMed  CAS  Google Scholar 

  • Kitayama I, Nakamura S, Yaga T, Murase S, Nomura J, Kayahara T, Nakano K (1994) Degeneration of locus coeruleus axons in stress-induced depression model. Brain Res Bull 35:573–580

    Article  PubMed  CAS  Google Scholar 

  • Klimek V, Papp M (1994) The effects of MK-801 and imipramine on beta adrenergic and 5HT2 receptors in the chronic mild stress model of depression in rats. Pol J Pharmacol Pharm 46:67–69

    CAS  Google Scholar 

  • Klimek V, Nielsen M, Maj J (1985) Repeated treatment with imipramine decreased the number of [3H]piflutixol binding sites in the rat striatum. Eur J Pharmacol 109:131–132

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava R (1998). Distinct mechanisms for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride). Am J Psychiatry 115:459–464

    PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Weiner ED, Ramazankhana R, Hartnick C, Edwards E, Henn FA (1992) Hippocampal neuropeptide Y mRNA is reduced in a strain of learned helpless resistant rats. Mol Brain Res 14:94–100

    Article  PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Boyle A, Sheftel G, Juthani M, Edwards E, Henn FA (1993) Alterations in glucocorticoid inducible RNAs in the limbic system of learned helpless rats. Brain Res 609:110–116

    Article  PubMed  CAS  Google Scholar 

  • Layer RT, Popik P, Olds T, Skolnick P (1995) Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmcol Biochem Behav 52:621–627

    Article  CAS  Google Scholar 

  • Lee KAW, Masson N (1993) Transcriptional regulation by CREB and its relatives. Biochem Biophys Acta 1174:221–233

    Article  PubMed  CAS  Google Scholar 

  • Leeb-Lundberg LMF, Cotecchia S, Lomasney JW, DeBernardis JF, Lefkowitz RJ, Caron MG (1985) Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci USA 82:5651–5655

    Article  PubMed  CAS  Google Scholar 

  • Leeb-Lundberg LMF, Cotecchia S, DeBlasi A, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. I. Agonist-promoted desensitization and phosphorylation of α-adrenergic receptors coupled to inositol phospholipid metabolism in DDT1 MF-2 smooth muscle cells. J Biol Chem 262:3098–3105

    PubMed  CAS  Google Scholar 

  • Lehmann HE, Kline NS (1983) Clinical discoveries with antidepressant drugs. In: Parnham MJ, Bruinvels J (eds) Discoveries in pharmacology, vol 1. Elsevier, Amersterdam, pp 209–221

    Google Scholar 

  • Lejeune F, Audinot V, Gobert A, River JM, Spedding M, Millan MJ (1994) Clozapine inhibits serotoninergic transmission by an action at a1-adrenoceptors not at 5HT1A receptors. Eur J Pharmacol 260:79–83

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE (1997) Noradrenaline in basic models of depression. Eur Neuropsychopharmacol 7(Suppl 1):S11–S16

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE, Spencer P (eds) (1990) Antidepressants: Thirty years on. CNS Publishers, London

    Google Scholar 

  • Lesch KP, Manji HK (1992) Signal-transducing G proteins and antidepressant drugs: evidence of modulation of ÎĽ subunit gene expression in rat brain. Biol Psychiatry 32:549–579

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Anlakh CS, Tollives TG, Hill JL, Murphy DL (1991) Regulation of G proteins by chronic antidepessant drugs in rat brain: tricyclics but not clorgyline increase Go ÎĽ subunits. Eur J Pharmacol 207:361–364

    Article  PubMed  CAS  Google Scholar 

  • Li PP, Warsh JJ, Sibony D, Chiu A (1985) Assessment of rat brain alpha 1-adrenoceptor binding and activation of inositol phospholipid turnover following chronic imipramine treatment. Neurochem Res 13:1111–1118

    Article  Google Scholar 

  • Li PP, Young LT, Warsh JJ (1994) Effects of antibipolar and antidepressant drugs on the levels of signal transducing G proteins and their messenger ribonucleic acid transcripts. Neuropsychopharmacology 10:380S

    Google Scholar 

  • Li Q, Hrdina PD (1997) GAP-43 phosphorylation by PKC in rat cerebrocortical synaptosomes: effect of antidepressants. Res Commun Mol Pathol Pharmacol 96:3–13

    PubMed  CAS  Google Scholar 

  • Maj J (1984) Central effects following repeated treatment with antidepressant drugs. Pol J Pharmacol Pharm 36:87–99

    PubMed  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1984) Repeated treatment with antidepressant drugs potentiates the locomotor response to (+)-amphetamine. J Pharm Pharmacol 36:127–130

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Wedzony K, Klimek V (1987) Desipramine given repeatedly enhances behavioural effects of dopamine and d-amphetamine injected into the nucleus accumbens. Eur J Pharmacol 140:179–185

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Papp M, Skuza G, Bigajska K, Zazula M (1989a) The influence of repeated treatment with imipramine, (+)-and (-)-oxaprotiline on behavioural effects of dopamine D-1 and D-2 agonists. J Neural Transm 76:29–38

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1989b) Antidepressants given repeatedly increase the behavioural effect of dopamine D-2 agonist. J Neural Transm Gen Sect 78:1–8

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1992a) The effect of CGP 37849 and CGP 39551, competitive NMDA receptor antagonists, in the forced swimming test. Pol J Pharm 44:337–346

    CAS  Google Scholar 

  • Maj J, RogĂłz Z, Skuza G. Sowiñska H (1992b) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacology 2:37–41

    Article  CAS  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z, Skuza G (1996) Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist [3H]N-0437 to dopamine D2 receptors in the rat brain. Eur J Pharmacol 304:49–54

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z (1998) Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain. Eur J Pharmacol 351:31–37

    Article  PubMed  CAS  Google Scholar 

  • Manier DH, Eiring A, Shelton RC, Sulser F (1996) Beta adrenoceptor-linked protein kinase A (PKA) activity in human fibroblasts from normal subjects and patients with major depression. Neuropsychopharmacology 15:555–561

    Article  PubMed  CAS  Google Scholar 

  • Manier DH, Shelton RC, Ellis T, Peterson CS, Eiring A, Sulser F (2000) Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000:61:51–58

    Article  PubMed  CAS  Google Scholar 

  • Manier DH, Shelton RC, Sulser F (2001) Cross-talk between PKA and PKC in human fibroblasts: What are the pharmacotherapeutic implications? J Affect Disord 65:275–279

    Article  PubMed  CAS  Google Scholar 

  • Manier DH, Shelton RC, Sulser F (2002) Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P? J Neural Transm 109:91–99

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Lenox RH (1994) Long-term action of lithium: A role for transcriptional and postranscriptional factors regulated by protein kinase C. Synapse 16:11–28

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Lenox RH (1999) Protein kinase C signaling in the brain: Molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 46:1328–1351

    Article  PubMed  CAS  Google Scholar 

  • Mann CD, Vu TB, Hrdina PD (1995) Protein kinase C in rat brain cortex and hippocampus: Effect of repeated administration of fluoxetine and desipramine. Br J Pharmacol 115:595–600

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Brooks EN, Chen YL (1997) Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 323:21–26

    Article  PubMed  CAS  Google Scholar 

  • Martin JV, Edwards E, Johnson JO, Henn FA (1990) Monoamine receptors in an animal model of affective disorders. J Neurochem 55:1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Menkes DB, Rasenick MM, Wheeler MA, Bitensky MW (1983) Guanosine triphosphate activation of brain adenylate cyclase: Enhancement by long-term antidepressant treatment. Science 219:65–67

    Article  PubMed  CAS  Google Scholar 

  • Meyer TE, Habener JF (1993) Cyclic adenosine 3’,5’-monophosphate response element binding protein (CREB) and related transcriptional-activating deoxyribonucleic acid-binding proteins. Endocrine Reviews 14:269–290

    PubMed  CAS  Google Scholar 

  • Mobley PL, Manier DH, Sulser F (1983) Adrenal corticoids regulate the norepinephrine sensitive adenylate cyclase system in brain. J Pharmacol Exp Ther 226:71–77

    PubMed  CAS  Google Scholar 

  • Montgomery SA (1997) Is there a role for a pure noradrenergic drug in the treatment of depression? Eur Neuropsychopharmacol 7(Suppl 1):S3–S9

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burcracher N, Sakmann B, Seeberg PH (1992) Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Moreau JL (1997) Validation of an animal model of anhedonia, a major symptom of depression. Encephale 23:280–289

    PubMed  CAS  Google Scholar 

  • Moreau JL, Jenck F, Martin JR, Mortas P, Haefely W (1993) Effects of moclobemide, a new generation reversible MAO-A inhibitor, in a novel animal model of depression. Pharmacopsychiatry 26:30–33

    Article  PubMed  CAS  Google Scholar 

  • Moreau JL, Bos M, Jenck F, Martin JR, Mortes P, Wichmann J (1996). 5HT2C receptor agonists exhibit antidepressant-like properties in the anhedonia model of depression in rats. Eur Neuropsychopharmacol 6:169–175

    Article  PubMed  CAS  Google Scholar 

  • Morinobu S, Nibuya M, Duman RS (1995) Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress to rat frontal cortex. Neuropsychopharmacology 12:221–228

    Article  PubMed  CAS  Google Scholar 

  • Muscat R, Papp M, Willner P (1992) Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berl) 109:433–438

    Article  CAS  Google Scholar 

  • Nalepa I (1994) The effect of psychotropic drugs on the interaction of protein kinase C with second messenger systems in the rat cerebral cortex. Pol J Pharmacol Pharm 46:1–14

    CAS  Google Scholar 

  • Nalepa I, Vetulani J (1991a) Different mechanisms of b-adrenoceptor downregulation by chronic imipramine and electroconvulsive treatment: possible role for protein kinase C. J Neurochem 57:904–910

    Article  PubMed  CAS  Google Scholar 

  • Nalepa I, Vetulani J (1991b) Involvement of protein kinase C in the mechanisms of in vitro effects of imipramine on generation of second messengers by noradrenaline in the cerebral cortical slices of the rat. Neuroscience 44:585–590

    Article  PubMed  CAS  Google Scholar 

  • Nalepa I, Vetulani J (1993a) The effect of calcium channel blockade on the action of chronic ECT and imipramine on responses of α1 and β-adrenoceptors in the rat cerebral cortex. Pol J Pharmacol Pharm 45:201–205

    CAS  Google Scholar 

  • Nalepa I, Vetulani J (1993b) Enhancement of the responsiveness of cortical adrenergic receptors by chronic administration of the 5-hydroxytryptamine uptake inhibitor citalopram. J Neurochem 60:2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Nalepa I, Vetulani J (1994) The responsiveness of cerebral cortical adrenergic receptors after chronic administration of atypical antidepressant mianserin. J Psychiatry Neurosci 19:120–128

    PubMed  CAS  Google Scholar 

  • Nalepa I, Chalecka-Franaszek E, Vetulani J (1993) The antagonistic effect of separate and consecutive chronic treatment with imipramine and ECT on the regulation of α1-adrenoceptor activity by protein kinase C. Pol J Pharmacol Pharm 45:521–532

    CAS  Google Scholar 

  • Nalepa I, Chalecka-Franaszek E, Vetulani J (1996) Modulation by mianserin pretreatment of the chronic electroconvulsive shock effects on the adrenergic system in the cerebral cortex of the rat. Human Psychopharmacology 11:273–282

    Article  CAS  Google Scholar 

  • Nalepa I, Manier DH, Gillespie DG, Rossby SP, Schmidt DE, Sulser F (1998) Lack of beta adrenoceptor desensitization in brain following the dual noradrenaline and serotonin reuptake inhibitor venlafaxine. Eur Neuropsychopharmacol 8:227–232

    Article  PubMed  CAS  Google Scholar 

  • Neliat G, Bodinier MC, Panconi E, Briley M (1996) Lack of effect of milnacipran, a double noradrenaline and serotonin reuptake inhibitor, on the b-adrenoceptor-linked adenylate cyclase system in the rat cerebral cortex. Neuropharmacology 35:589–593

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G, Karlsson I, Eklund K, Kilts CD, Loosen P, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M(1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 45:577–579

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Greengard P (1984) Protein phosphorylation in the nervous system. Wiley, New York

    Google Scholar 

  • Nestler EJ, Terwilliger RZ, Duman RS (1989) Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 53:1644–1647

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, McMahon A, Sabban EL, Tallman JT, Duman RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 87:7522–7526

    Article  PubMed  CAS  Google Scholar 

  • Newman ME, Lerer B (1989) Modulation of second messenger function in rat brain by in vivo alteration of receptor sensitivity: relevance to the mechanism of action of electroconvulsive therapy and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 13:1–30

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvlusive seizure and antidepressant drug treatment. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of CREB in rat hippocampus. J Neurosci 16:2365–2372

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  PubMed  CAS  Google Scholar 

  • Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA (1993) Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropane-carboxylic acid. J Pharmacol Exp Ther 265:1380–1386

    PubMed  CAS  Google Scholar 

  • Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164

    Article  PubMed  CAS  Google Scholar 

  • Okuyama S, Chaki S, Kawashima N, Suzuki Y, Ogawa S, Nakazato A, Kumagai T, Okubo T, Tomisawa K (1999) Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin-releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. J Pharmacol Exp Ther 289:926–935

    PubMed  CAS  Google Scholar 

  • Oswald I, Brezinova V, Dunleavy DLF (1973) On the slowness of action of tricyclic antidepressant drugs. Br J Psychiatry 120:673–677

    Article  Google Scholar 

  • Owens MJ, Morgan WN, Plott SE, Jeni J, Nemeroff CB (1995) In vitro inhibition of the rat and human serotonin and norepinephrine transporters by the antidepressant nefazodone and its metabolites. Soc Neurosci 21:309.1 (abstract)

    Google Scholar 

  • Panconi E, Roux J, Altenbaumer M, Hampe S, Porsolt RD (1993) MK-801 and enantiomers: Potential antidepressants or false positives in classical screening models? Pharmacol Biochem Behav 46:15–20

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Heinze WJ, Brown BD, Davis JM (1979) Electroconvulsive shock treatment decreases β-adrenergic receptor sensitivity in rat brain. Nature 280:234–235

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Pandey SC, Isaac L, Davis M (1992) Effect of electroconvulsive shock on 5HT2 and α1-adrenoceptors and phosphoinositide signaling system in rat brain. Eur J Pharmacol 226:303–310

    Article  PubMed  CAS  Google Scholar 

  • Papp M (1996) Comparison of antidepressant and psychomimetic effects of agents acting at various sites of the NMDA receptor complex. Behav Pharmacol 7(suppl 1):82–83

    Article  Google Scholar 

  • Papp M, Moryl E (1994) Antidepressant activity of noncompetitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 263:1–7

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Moryl E (1996) Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 316:145–151

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Klimek V, Willner P (1994a) Effects of imipramine on serotonergic and beta-adrenergic receptor binding in a realistic animal model of depression. Psychopharmacology (Berlin) 114:309–14

    Article  CAS  Google Scholar 

  • Papp M, Klimek V, Willner P (1994b) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology-Berl 115:441–446

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Nalepa I, Vetulani J (1994c) Reversal by imipramine of beta adrenoceptor upregulation induced in a chronic mild stress model of depression. Eur J Pharm 261:141–147

    Article  CAS  Google Scholar 

  • Papp M, Moryl E, Willner P (1996) Pharmacological validation of the chronic mild stress model of depression. Eur J Pharmacol 296:129–136

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Pearce BD, Pisell TL, Owens MJ, Miller AH (1997) Steroid-independent translocation of the glucocorticoid receptor by the antidepressant desipramine. Mol Pharmacol 52:571–581

    PubMed  CAS  Google Scholar 

  • Paul IA, Trullas R, Skolnick P, Nowak G (1992) Down-regulation of cortical β-adrenoceptors by chronic treatment with functional NMDA antagonists. Psychopharmacology 106:285–287

    Article  PubMed  CAS  Google Scholar 

  • Paul IA, Layer RT, Skolnick P, Nowak G (1993) Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine. Eur J Pharmacol 247:305–312

    Article  PubMed  CAS  Google Scholar 

  • Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269:95–102

    PubMed  CAS  Google Scholar 

  • Peiffer A, Veilleaux S, Barden N (1991) Antidepressant and other centrally acting drugs regulate glucocorticoid receptor messenger RNA levels in rat brain. Psychoneuroendocrinology 16:505–515

    Article  PubMed  CAS  Google Scholar 

  • Pepin MC, Beaulieu S, Barden N (1989) Antidepressants regulate glucocorticoid receptor messenger RNA concentrations in primary neuronal cultures. Mol Brain Res 6:77–83

    Article  PubMed  CAS  Google Scholar 

  • Pepin MC, Pothier F, Barden N (1992) Antidepressant drug action in a transgenic mouse model of the endocrine changes seen in depression. Mol Pharmacol 42:991–995

    PubMed  CAS  Google Scholar 

  • Perez J, Tinelli D, Brunello N, Racagni G (1989) CAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Europ J Pharmacol 172:305–316

    Article  CAS  Google Scholar 

  • Perez J, Moris, Caivano M, Fumagalli I, Pezzetta B, Tascedda F, Brunello N, Racagni G (1994) cAMP protein kinase as a intracellular target for the action of antidepressant drugs. Neuropyschopharmacology 10:171S (Abstract)

    Google Scholar 

  • Peterson MG, Tupy JL (1994) Transcriptional factors: A new frontier in pharmaceutical development. Biochem Pharmacol 47:127–128

    Article  PubMed  CAS  Google Scholar 

  • Pietu G, Decraene C, Fayerin N, Manage-Samson R, Eveno E, Matingan C, Devigues M, Auffray C (2001) Characterization of expression profiles of genes involved in brain functions by quantitative hybridization of high-density cDNA arrays. In: Briley M, Sulser F (eds) Molecular genetics of mental disorders. Martin Dunitz Ltd, London pp 1–19

    Google Scholar 

  • Pilc A, Branski P, Palucha A, Aronowski J (1999) The effect of prolonged imipramine and electroconvulsive shock treatment on calcium/calmodulin-dependent protein kinase II in the hippocampus of rat brain. Neuropharmacology 38:597–603

    Article  PubMed  CAS  Google Scholar 

  • Plaznik A, Kostowski W, Archer T (1989) Serotonin and depression: Old problems and new data. Prog Neuropsychopcharmacol Biol Psychiatry 13:623–633

    Article  CAS  Google Scholar 

  • Pletscher A, Shore PA, Brodie BB (1955) Serotonin release as a possible mechanism of reserpine action. Science 122:374–375

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophyseal-portal circulation after activation of catecholaminergic pathways of central norepinephrine injection. Endocrinology 121:924–930

    Article  PubMed  CAS  Google Scholar 

  • Popoli M, Vocaturo C, Perez J, Smeraldi E, Racagni G (1995) Presynaptic Ca2+/calmodulin-dependent protein kinase II: Autophosphorylation and activity increase in the hippocampus after long-term blockade of serotonin reuptake. Mol Pharmacol 48:623–629

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lanegre A (1992) Behavioral models of depression. In: Elliot JM, Heal DJ, Marsden CA (eds) Experimantal approaches to anxiety and depression. John Wiley: Chichester, pp 73–86

    Google Scholar 

  • Porsolt RD, Lenegre A, McArthur RA (1991) Pharmacological models of depression. In: Oliver B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhauser, Basel, pp 137–159

    Google Scholar 

  • Porter R, Bock G, Clark S (eds) (1986) Antidepressants and receptor function. Ciba Foundation Symposium 123, Wiley, Chichester, UK

    Google Scholar 

  • Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9:175–182

    PubMed  CAS  Google Scholar 

  • Pryor JC, Sulser F (1991) Evolution of monoamine hypotheses of depression. In: Horton RW, Katona C (eds) Biological aspects of affective disorders. Academic Press, London, pp 77–94

    Google Scholar 

  • Przegalinski E, Budziszewska B (1993) The effect of long-term treatment with antidepressant drugs on the hippocampal mineralocorticoid and glucocorticoid receptors in rats. Neurosci Lett 161:215–218

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski E, Moryl E, Papp M (1995) The effect of 5-HT1A receptor ligands in a chronic mild stress model of depression. Neuropharmacology 34:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Quetsch RM, Achor RWP, Litin EM, Faucett RL (1959) Depressive reactions in hypertensive patients. A comparison of those treated with rauwolfia and those receiving no specific antihypertensive treatment. Circulation 19:366–375

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD (1997) Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci 17:45–57

    PubMed  CAS  Google Scholar 

  • Rahman S, Li PP, Young LT, Kofman O, Kish SJ, Warsh JJ (1997) Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem 68:297–304

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I, Fog R, Gerlach J, Molander R, Kjellenberg B, Scheel-Krueger J (1975) Mania, depression and brain dopamine. Curr Develop Psychopharmacol 2:207–229

    Google Scholar 

  • Rasenick MM (1994) G proteins as the molecular target of antidepressant action: Chronic treatment increases coupling between Gs and adenylate cyclase. Neuropsychopharmacology 10:580S (Abstract)

    Google Scholar 

  • Riva M, Brunello N, Rovescalli AC, Galimberti R, Carfagna N, Carminati P, Pozzi O, Ricciardi S, Roncucci R, Rossi A, Racagni G (1989) Effect of reboxetine, a new antidepressant drug, on the central noradrenergic system: behavioural and biochemical studies. J Drug Development 1:243–253

    Google Scholar 

  • Rivier CL, Plotsky PM (1986) Mediation by corticotropin-releasing factor (CRF) of adenohypophyseal hormone secretion. Ann Rev Physiol 48:475–494

    Article  CAS  Google Scholar 

  • Rivier J, Rivier C, Vale W (1984) Synthetic competitive antagonists of corticotropin-releasing factor: Effect on ACTH secretion in the rat. Science 224:889–891

    Article  PubMed  CAS  Google Scholar 

  • Roberts VJ, Singhal RL, Roberts DCS (1984) Corticosterone prevents the increase in noradrenaline stimulated adenyl cyclase activity in rat hippocampus following adrenalectomy or metopirone. Eur J Pharmacol 103:235–240

    Article  PubMed  CAS  Google Scholar 

  • Rossby SP, Sulser F (1993) Die Wirkmechanismen von Antidepressiva: Ein historischer RĂĽckblick und neue neurobiologische Aspekte. ZNS Journal, Forum fur Psychiatrie und Neurologie 1:10–19

    Google Scholar 

  • Rossby SP, Sulser F (1997) Antidepressants: Events beyond the synapse. In: Skolnick P (ed) Antidepressants: New pharmacological strategies. Humana Press, Totowa, NJ, pp 195–212

    Google Scholar 

  • Rossby SP, Nalepa I, Huang M, Burt A, Perrin C, Schmidt DE, Sulser F (1995) Norepinephrine-independent regulation of GRII mRNA in vivo by a tricyclic antidepressant. Brain Res 687:79–82

    Article  PubMed  CAS  Google Scholar 

  • Rossby SP, Perrin C, Burt A, Nalepa I, Schmidt DE, Sulser F (1996) Fluoxetine increases steady-state levels of preproenkephalin mRNA in rat amygdala by a serotonin dependent mechanism. J Serotonin Res 3:69–74

    CAS  Google Scholar 

  • Rossby SP, Manier DH, Liang S, Nalepa I, Sulser F (1999) Venlafaxine: Pharmacological actions beyond aminergic receptors. Int J Neuropsychopharmacol 2:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rossby SP, Liang S, Manier DH, Chakrabarti A, Shelton RC, Sulser F (2001) Molecular psychopharmacology as a prelude to a molecular psychopathology of affective disorders: The significance of differential display methodology to study programs of gene expression. In: Briley M, Sulser F (eds) Molecular genetics of mental disorders. Martin Dunitz, Ltd., London, pp 31–46

    Google Scholar 

  • Rouquier L, Claustre Y, Benavides J (1994) α1-Adrenoceptor antagonists differentially control serotonin release in the rat hippocampus and striatum: A microdialysis study. Eur J Pharm 261:59–64

    Article  CAS  Google Scholar 

  • Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682

    Article  PubMed  CAS  Google Scholar 

  • Salin P, Kerkerian L, Nieoullon A (1990) Expression of neuropeptide Y immunoreactivity in the rat nucleus accumbens is under the influence of the of the dopaminergic mesencephalic pathway. Exp Brain Res 81:363–371

    Article  PubMed  CAS  Google Scholar 

  • Sampson D, Muscat R, Willner P (1991) Reversal of antidepressant action by dopamine antagonists in an animal model of depression. Psychopharmacology 104:491–495

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Adams R, Betz H, Schloss P (1995a) Modulation of a recombinant glycine transporter (GLYT1b) by activation of protein kinase C. J Neurochem 65:1967–1973

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Betz H, Schloss P (1995b) The recombinant GABA transporter GAT1 is downregulated upon activation of protein kinase C. FEBS Lett 375:99–102

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ, Kety SS (1967) Biogenic amines and emotion. Science 156:21–30

    Article  PubMed  CAS  Google Scholar 

  • Schultz J (1976) Psychoactive drug effects on a system which generates cyclic AMP in brain. Nature 261:417–418

    Article  PubMed  CAS  Google Scholar 

  • Schwaninger M, Schofl C, Blume R, Rossig L, Knepel W (1995) Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription. Mol Pharmacol 47:1112–1118

    PubMed  CAS  Google Scholar 

  • Seasholtz AF, Gamm DM, Ballestero RP, Scarpetta MA, Uhler MD (1995) Differential expression of mRNAs for protein kinase inhibitor isoforms in mouse brain. Proc Natl Acad Sci USA 92:1734–1738

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR, Fink G (1992) Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology 55:621–626

    Article  PubMed  CAS  Google Scholar 

  • Shelton R, Manier DH, Sulser F (1996) Cyclic cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 153:1037–1042

    PubMed  CAS  Google Scholar 

  • Shelton RC, Manier DH, Ellis T, Peterson CS, Sulser F (1999) Cyclic AMP dependent protein kinase in subtypes of major depression and normal volunteers. Int J Neuropsy-chopharmacol 3:187–192

    Article  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991). CREB: A Ca++ regulated transcriptional factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Shih M, Malbon CC (1994) Oligodeoxygnucleotides antisense to mRNA encoding protein kinase A, protein kinase C and b-adrenergic receptor kinase reveal distinctive celltype specific roles in agonist-induced desensitization. Proc Natl Acad Sci USA 91:12193–12197

    Article  PubMed  CAS  Google Scholar 

  • Shirayama Y, Mitsushio H, Takashima M, Ichikawa H (1996) Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat. Brain Res 739:70–78

    Article  PubMed  Google Scholar 

  • Sibley DR, Strasser RH, Benovic JL, Daniel K, Lefkowitz RJ (1986) Phosphorylation/dephosphorylation of the b-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 83:9408–9412

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26

    Article  PubMed  CAS  Google Scholar 

  • Skutella T, Montkowski A, Stoehr T, Probst JC, Landgraf R, Holsboer F, Jirikowski GF (1994) Corticotropin-releasing hormone (CRF) antisense oligodeoxynucleotide treatment attenuates social defeat-induced anxiety in rats. Cell Mol Neurobiol 14:579–588

    Article  PubMed  CAS  Google Scholar 

  • Sluzewska A, Nowakowska E (1994) The effects of carbamazepine, lithium and ketoconazole in chronic mild stress model of depression in rats. Behav Pharmacol 5(Suppl 1):86 (Abstract)

    Google Scholar 

  • Spyraki C, Fibiger HC (1981) Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. Eur J Pharmacol 74:195–206

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA, Muscat R, O'Connor JJ, Patel JJ, Wieczorek WJ, Kruk ZL, Willner P (1991) Voltammetric evidence that subsensivity to reward following chronic mild stress is associated with increased release of mesolimbic dopamine. Psychopharmacology 105:275–282

    Article  PubMed  CAS  Google Scholar 

  • Stogner KA, Holmes PV (2000) Neuropeptide-Y exerts antidepressant-like effects in the forced swim test in rats. Eur J Pharmacol 387:R9–R10

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1979a) Reduction by stress of norepinephrine-stimulated accumulation of cyclic AMP in rat cerebral cortex. J Neurochem 32:1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1979b) Subsensitivity to norepinephrine as a link between adaptation to stress and antidepressant therapy: A hypothesis. Res Commun Psychol Psychiat Behav 4:241–255

    CAS  Google Scholar 

  • Stone EA, Platt JE, Herrera AS, Kirk KL (1986) Effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices. J Pharm Exp Ther 237:702–707

    CAS  Google Scholar 

  • Sulser F (1978) Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to an understanding of affective disorders. Pharmakopsychiatry 11:43–52

    Article  CAS  Google Scholar 

  • Sulser F, Mishra R (1983) The discovery of tricyclic antidepressants and their mode of action. In: Parnham MJ, Bruinvels J, (eds) Discoveries in pharmacology, vol 1. Elsevier, Amersterdam, pp 233–247

    Google Scholar 

  • Szabadi E, Bradshaw CM, Boston PF, Langley RW (1998). The human pharmacology of reboxetine. Human Psychopharmacology 13;S3–S12

    Article  CAS  Google Scholar 

  • Szmigielski A, Gorska D (1997) The effect of prolonged imipramine treatment on the alpha 1-adrenoceptor-induced translocation of protein kinase C in the central nervous system in rats. Pharmacol Res 35:569–576

    Article  PubMed  CAS  Google Scholar 

  • Tassin JP, Studler JM, Herve D, Blanc G, Glowinski J (1986) Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex. J Neurochem 46:243–248

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS (1989) cAMP-dependent protein kinase. J Biol Chem 264:8443–8446

    PubMed  CAS  Google Scholar 

  • Toth M, Shenk T (1994) Antagonist-mediated down-regulation of 5-hydroxytryptamine type 2 receptor gene expression: Modulation of transcription. Mol Pharmacol 45:1095–1100

    PubMed  CAS  Google Scholar 

  • Trovero F, Herve D, Blanc G, Glowinski J, Tassin JP (1992) In vivo partial inactivation of dopamine D1 receptors induces hypersensitivity of cortical dopamine-sensitive adenylate cyclase: permissive role of alpha 1-adrenergic receptors. J Neurochem 59:331–337

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatment reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature 257:495–496

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Sulser F (1976a) Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the limbic forebrain of the rat: Adaptation to persistent changes in the availability of norepinephrine (NE). J Neurochem 27:661–666

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976b) A possible common mechanism of action of antidepressant treatments. Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg's Arch Pharmacol 293:109–114

    Article  CAS  Google Scholar 

  • Vetulani J, Lebrecht U, Pilc A (1981) Enhancement of responsiveness of the central serotonergic system and serotonin-2 receptor density in the rat frontal cortex by electroconvulsive treatment. Eur J Pharmacol 76:81–85

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pilc A (1983) Chronic electroconvulsive treatment enhances the density of [3H]prazosin binding sites in the central nervous system of the rat. Brain Res 275:392–395

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pilc A (1984a) Alpha up-beta down adrenergic regulation: A possible mechanism of action of antidepressant treatments. Pol J Pharmacol Pharm 36:231–248

    PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A (1984b) Chronic administration of antidepressant drugs increases the density of cortical 3H-prazosin binding sites in the rat. Brain Res 310:360–362

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1989) Dysbalance of neuronal second messenger function in the aetiolgy of affective disorders: A pathophysiological concept hypothesising defects beyond first messenger receptors. J Neural Transm 75:21–29

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C, Ekman R, Widerlov E (1989) Neuropeptide Y and the central nervous system: Distribution and possible relationship to neurological and psychiatric disorders. Prog Neuropsychopharmacol Biol Psychol 13:31–54

    Article  CAS  Google Scholar 

  • Wedzony K, Klimek V, Nowak G (1995) Rapid down-regulation of beta-adrenergic receptors evoked by combined forced swimming test and CGP 37849—a competitive antagonist of NMDA receptors. Pol J Pharmacol Pharm 47:537–540

    CAS  Google Scholar 

  • White BD, Dean R, Martin RJ (1990) Adrenalectomy decreases neuropeptide Y mRNA levels in the arcuate nucleus. Brain Res Bull 25:711–715

    Article  PubMed  CAS  Google Scholar 

  • Widerlov E, Lindstom LM, Wahlestedt C, Ekman R (1988) Neuropeptide Y and peptide YY as possible cerebrospinal markers for major depression and schizophrenia, respectively. J Psychiatric Res 22:69–79

    Article  CAS  Google Scholar 

  • Wielosz M (1981) Increased sensitivity to dopaminergic agonists after repeated electroconvulsive shock (ECT) in rats. Neuropharmacology 10:941–945

    Article  Google Scholar 

  • Willner P (1983) Dopamine and depression: A review of recent evidence. III. The effects of antidepressant treatments. Brain Res 287:237–246

    PubMed  CAS  Google Scholar 

  • Willner P (1991) Animals models as simulation of depression. Trends Pharmacol Sci 12:131–136

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1997a) The mesolimbic dopamine system as a target for rapid antidepressant action. Int Clin Psychopharmacol 12(Suppl 3):S7–S14

    Article  PubMed  Google Scholar 

  • Willner P (1997b) Validity, reliability and utility of the chronic mild stress model of depression: A 10 year review and evaluation. Psychopharmacology 134:319–329

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Papp M (1997) Animal models to detect antidepressants: Are new strategies necessary to detect new agents? In: Skolnick P (ed) Antidepressants: New pharmacological strategies. Humana Press, Totowa, NJ, pp 213–234

    Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleus S, Muscat R (1987) Reduction of sucrose preference by chronic mild stress and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Klimek V, Golembiowska K, Muscat R (1991) Changes in mesolimbic dopamine may explain stress-induced anhedonia. Psychobiology 19:79–84

    CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta-adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: Twenty years since its first publication. Life Sci 57:411–441

    Article  PubMed  CAS  Google Scholar 

  • Wong EHF, Sonders MS, Amara SG, Tinholt PM, Piercey MF, Hoffmann WP, Hyslop DK, Franklin S, Porsolt RD, Bonsignori A, Carfagna N, McArthur RA (2000) Reboxetine: A pharmacologically potent, selective and specific norepinephrine reuptake inhibitor (NRI). Biol Psychiatry 47:818–829.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K, Sabol SL (1986) Expression of the enkephalin precursor gene in C6 glioma cells: Regulation by b-adrenergic agonists and glucocorticoids. Molec Brain Res 1:75–83

    Article  Google Scholar 

  • Yuan PX, Chen G, Huang LD, Manji HK (1998) Lithium stimulates gene expression through the AP-1 transcription factor pathway. Mol Brain Res 58:225–230

    Article  PubMed  CAS  Google Scholar 

  • Yuan P, Chen G, Manji HK (1999) Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J Neurochem 73:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Zeller EA (1983) Monoamine oxidase and its inhibitors in relation to antidepressive activity. In: Parnham MJ, Bruinvels J (eds) Discoveries in pharmacology, vol 1. Elsevier, Amersterdam, pp 223–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nalepa, I., Sulser, F. (2004). New Hypotheses to Guide Future Antidepressant Drug Development. In: Preskorn, S.H., Feighner, J.P., Stanga, C.Y., Ross, R. (eds) Antidepressants: Past, Present and Future. Handbook of Experimental Pharmacology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18500-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18500-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62135-2

  • Online ISBN: 978-3-642-18500-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics