Skip to main content

Biochemical and Physiological Processes in Brain Function and Drug Actions

  • Chapter
Antidepressants: Past, Present and Future

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 157))

Abstract

An understanding of the basic elements of neurotransmission in the brain is an important foundation for any consideration of the clinical use and future development of antidepressants. However, attempts to describe the influences of drugs on brain and neuronal function have become increasingly complex, and it is now clear that neuronal processes are complex molecular events involving multiple control factors. The brain consists of approximately 100 million neurons, which account for half of the brain's volume, with the other half being made up of glial cells. New insights into the function of glial cells, the influence of phosphorylation on neuronal functions, and the regulation of genetic functions in synthesizing neuronal proteins have enhanced our appreciation of the complexity of neural function in the brain. Glial cells play an important role in recycling and conserving the neurotransmitters glutamate and GABA and also have an important effect on neurons in the brain via glial cell line-derived neurotrophic factor (GDNF). The basic function of neurons is to convey electrical signals in a highly organized and integrated way. The dominant means of neuron-to-neuron communication or transmission occurs by means of specific chemicals (i.e., neurotransmitters). Neuronal communication is a complex process that involves neurotransmitter storage and release, neurotransmitter inactivation, receptors, G proteins, and second messengers. A number of neuronal mechanisms have been identified that are thought to play important roles in the etiology of major depressive disorder (e.g., the serotonin transporter mechanism); an increasing understanding of the neuronal mechanisms that underlie psychiatric disorders will help to guide future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschner M, Allen JW, Kimelberg HK, LoPachin RM, Streit WJ (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173

    Article  PubMed  CAS  Google Scholar 

  • Attwell D (1994) Neurobiology: glia and neurons in dialogue. Nature 369:707–708

    Article  PubMed  CAS  Google Scholar 

  • Bacci A, Verderio C, Pravettoni E, Matteoli M (1999) The role of glial cells in synaptic function. Philos Trans R Soc Lond B Biol Sci 354:403–409

    Article  PubMed  CAS  Google Scholar 

  • Baker R, Llinas R (1971) Electronic coupling between neurons in the rat mesencephalic nucleus. J Physiol 212:45–63

    PubMed  CAS  Google Scholar 

  • Baraban JM, Worley PF, Snyder SH (1989) Second messenger systems and psychoactive drug action: focus on the phosphoinositide system and lithium. Am J Psychiatry 146:1251–1259

    PubMed  CAS  Google Scholar 

  • Belmaker RH, Livine A, Agam G, Moscovich DG, Grisaru N, Schreiber G, Avissar S, Danon A, Kofman O (1990) Role of inositol-1-phosphatase inhibition in the mechanism of action of lithium. Pharmacol Toxicol 66(suppl 3):76–83

    PubMed  CAS  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT Jr, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  PubMed  CAS  Google Scholar 

  • Blakely RD, Ramamoorthy S, Qian Y, Schroeter S, Bradley CC (1997) Regulation of anti-depressant-sensitive serotonin transporters. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, NJ, pp 29–72

    Google Scholar 

  • Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A, DeFelice LJ (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol.Psychiatry 44:169–178

    Article  PubMed  CAS  Google Scholar 

  • Bohn MC (1999) A commentary on glial cell line-derived neurotrophic factor (GDNF): from a glial secreted molecule to gene therapy. Biochem Pharmacol 57:135–142

    Article  PubMed  CAS  Google Scholar 

  • Caldecott-Hazard S, Morgan DG, DeLeon-Jones F, Overstreet DH, Janowsky D (1991) Clinical and biochemical aspects of depressive disorders. II: transmitter/receptor theories. Synapse 9:251–301

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. In: Rudy B, Seeburg P (eds) Molecular and functional diversity of ion channels and receptors. The New York Academy of Sciences, New York, pp 144–159

    Google Scholar 

  • Clapham DE, Neer EJ (1993) New roles for G-protein beta gamma-dimers in transmembrane signaling. Nature 365:403–406

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7th edition. Oxford University Press, New York

    Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM (1991) Ca2+ waves in astrocytes. Cell Calcium 12:185–204

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induced calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  PubMed  CAS  Google Scholar 

  • Corvalan V, Cole R, de Vellis J, Hagiwara S (1990) Neuronal modulation of calcium channel activity in cultured rat astrocytes. Proc Natl Acad Sci U S A 87:4345–4348

    Article  PubMed  CAS  Google Scholar 

  • Danoff SK, Ross CA (1994) The inositol trisphosphate receptor gene family: implications for normal and abnormal brain function. Prog Neuropsychopharmacol Biol Psychiatry 18:1–16

    Article  PubMed  CAS  Google Scholar 

  • Enkvist MOK, McCarthy KD (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J Neurochem 59:519–526

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91:9302–9306

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Petersen CI, deBlaquiere M, Blakely RD, DeFelice LJ (1997) Drosophila serotonin transporters have voltage-dependent uptake coupled to a serotonin-gated ion channel. J Neurosci 17:3401–3411

    PubMed  CAS  Google Scholar 

  • Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    PubMed  CAS  Google Scholar 

  • Gilman AG (1989) G proteins and regulation of adenylyl cyclase. JAMA 262:1819–1825

    Article  PubMed  CAS  Google Scholar 

  • Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H] dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol 245:35–42

    Article  Google Scholar 

  • Guldberg HC, Mardsen CA (1975) Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev 27:135–206

    PubMed  CAS  Google Scholar 

  • Haga K, Haga T (1992) Activation by G protein βy subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267:2222–2227

    PubMed  CAS  Google Scholar 

  • Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J 4:2881–2889

    PubMed  CAS  Google Scholar 

  • Hokin LE, Dixon JF (1993) The phosphoinositide signalling system. I. historical background. II. Effects of lithium on the accumulation of second messenger inositol 1,4,5-trisphosphate in brain cortex slices. Prog Brain Res 98:309–315

    Article  PubMed  CAS  Google Scholar 

  • Hughes RL (1990) Cyclosporine-related central nervous system toxicity in cardiac transplantation [letter]. N Engl J Med 323:420–421

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Wada H (1994) Histamine and prostanoid receptors on glial cells. Glia 11:102–109

    Article  PubMed  CAS  Google Scholar 

  • Joels M, de Kloet ER (1994) Mineralcorticoid and glucocorticoid receptors in the brain: implications for ion permeability and transmitter systems. Prog Neurobiol 43:1–36

    Article  PubMed  CAS  Google Scholar 

  • Jursky F, Tamura S, Tamura A, Mandiyan S, Nelson H, Nelson N (1994) Structure, function and brain localization of neurotransmitter transporters. J Exp Biol 196:283–295

    PubMed  CAS  Google Scholar 

  • Kanai Y, Smith CP, Hediger MA (1994) A new family of neurotransmitter transporters: the high-affinity glutamate transporters. FASEB J 8:1450–1459

    Google Scholar 

  • Kanner BI, Bendahan A, Pantanowitz S, Su H (1994) The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett 356:191–194

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Petersen OH (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17:95–101

    Article  PubMed  CAS  Google Scholar 

  • Kelly RB (1999) An introduction to the nerve terminal. In: Bellen HJ (ed) Neruotransmitter release. Oxford University Press, Oxford, pp 1–33

    Google Scholar 

  • Kenakin T (1995a) Agonist-receptor efficacy I: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol Sci 16:188–192

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1995b) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  CAS  Google Scholar 

  • Kilts CD (1994) Recent pharmacologic advances in antidepressant therapy. Am J Med 97(suppl 6A):3S–12S

    Article  PubMed  CAS  Google Scholar 

  • Kofman O, Belmaker RH (1993) Ziskind-Somerfeld Research Award 1993. Biochemical, behavioral, and clinical studies of the role of inositol in lithium treatment and depression. Biol Psychiatry 34:839–852

    Article  PubMed  CAS  Google Scholar 

  • Korn H, Sotelo C, Crepel F (1973) Electronic coupling between neurons in rat lateral vestibular nucleus. Exp Brain Res 16:255–275

    Article  PubMed  CAS  Google Scholar 

  • Krantz DE, Chaudhry FA, Edwards RH (1999) Neurotransmitter transporters. In: Bellen HJ (ed) Neurotransmitter release. Oxford University Press, Oxford, pp 145–207

    Google Scholar 

  • Lai J, Bilsky EJ, Rothman RB, Porreca F (1994) Treatment with antisense oligodeoxynucleotide to the opioid delta receptor selectively inhibits delta 2-agonist antinociception. Neuroreport 5:1049–1052

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA (1998) A preclinical development strategy designed to optimize the use of glial cell line-derived neurotrophic factor in the treatment of Parkinson’s disease. Mov Disord 13(suppl 1):49–54

    PubMed  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region [see comments]. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Mossner R (1998) Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol Psychiatry 44:179–192

    Article  PubMed  CAS  Google Scholar 

  • Lester HA, Cao Y, Mager S (1996) Listening to neurotransmitter transporters. Neuron 17:807–810

    Article  PubMed  CAS  Google Scholar 

  • Levitan IB, Kacmarek LK (1997) The neuron: cell and molecular biology, 2nd edition. New York, Oxford University Press

    Google Scholar 

  • Llinas R, Baker R, Sotelo C (1974) Electronic coupling between neurons in the cat inferior olive. J Neurophysiol 37:560–571

    PubMed  CAS  Google Scholar 

  • LoTurco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566

    Article  CAS  Google Scholar 

  • Lovinger DM (1997) Alcohols and neurotransmitter gated ion channels: past, present and future. Naunyn Schmiedebergs Arch Pharmacol 356:267–282

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Hen R (1995) New players in the 5-HT receptor field: genes and knockouts. Trends Pharmacol Sci 16:246–252

    Article  PubMed  CAS  Google Scholar 

  • Lyson T, Ermel LD, Belshaw PJ, Alberg DG, Schreiber SL, Victor RG (1993) Cyclosporine-and FK506-induced sympathetic activation correlates with calcineurin-mediated inhibition of T-cell signaling. Circ Res 73:596–602

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci. 22:443–485

    Article  PubMed  CAS  Google Scholar 

  • Mannisto PT, Ulmanen I, Lundstrom K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S (1992) Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res 39:291–350

    PubMed  CAS  Google Scholar 

  • Marshall IC, Taylor CW (1993) Regulation of inositol 1,4,5-trisphosphate receptors. J Exp Biol 184:161–182

    PubMed  CAS  Google Scholar 

  • Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(suppl 2):S1–S6

    PubMed  CAS  Google Scholar 

  • McKnight GS (1991) Cyclic AMP second messenger systems. Curr Opin Cell Biol 3:213–217

    Article  PubMed  CAS  Google Scholar 

  • Melcangi RC, Magnaghi V, Martini L (1999) Steroid metabolism and effects in central and peripheral glial cells. J Neurobiol 40:471–483

    Article  PubMed  CAS  Google Scholar 

  • Melikian HE, Ramamoorthy S, Tate CG, Blakely RD (1996) Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol Pharmacol 50:266–276

    PubMed  CAS  Google Scholar 

  • Nalepa I (1994) The effect of psychotropic drugs on the interaction of protein kinase C with second messenger systems in the rat cerebral cortex. Pol J Pharmacol 46:1–14

    PubMed  CAS  Google Scholar 

  • Narahashi T, Aistrup GL, Marszalec W, Nagata K (1999) Neuronal nicotinic acetylcholine receptors: a new target site of ethanol. Neurochem Int 35:131–141

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl-neurotransmitter transporters. J Neurochem 71:1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  • Oswald I, Brezinova V, Dunleavy DLF (1972) On the slowness of action of tricyclic antide-pressant drugs. Br J Psychiatry 120:673–677

    Article  PubMed  CAS  Google Scholar 

  • Otero GC, Merrill JE (1994) Cytokine receptors on glial cells. Glia 11:117–128

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy L, Vadnal RE, Parthasarathy R, Devi CS (1994) Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci 54:1127–1142

    Article  PubMed  CAS  Google Scholar 

  • Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269:95–102

    PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15:5179–5191

    PubMed  CAS  Google Scholar 

  • Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9:175–182

    PubMed  CAS  Google Scholar 

  • Rahamimoff R, Butkevich A, Duridanova D, Ahdut R, Harari E, Kachalsky SG (1999) Multitude of ion channels in the regulation of transmitter release. Philos Trans R Soc Lond B Biol Sci 354:281–288

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Werner A, Bluthmann H, Doetschmann T, Kreutzberg GW (1999) Molecular signals for glial activation: pro-and anti-inflammatory cytokines in the injured brain. Acta Neurochir Suppl (Wien) 73:21–30

    CAS  Google Scholar 

  • Ransom BR, Sontheimer H (1992) The neurophysiology of glial cells. J Clin Neurophysiol 9:224–251

    Article  PubMed  CAS  Google Scholar 

  • Rens-Domiao S, Hamm HE (1995) Structural and functional relationships of heterotrimeric G-proteins. FASEB J 9:1059–1066

    Google Scholar 

  • Robinson SR, Hampson E, Munro MN, Vaney DI (1993) Unidirectional coupling of gap junctions between neuroglia. Science 262:1072–1074

    Article  PubMed  CAS  Google Scholar 

  • Ronde P, Nichols RA (1998) High calcium permeability of serotonin 5-HT3 receptors on presynaptic nerve terminals from rat striatum. J Neurochem 70:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Saarma M, Sariola H (1999) Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45:292–302

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    Article  PubMed  CAS  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  • Shank RP, William JB, Charles WA (1989) Glutamine and 2-oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA: correlation of regional uptake by rat brain synaptosomes. Neurochem Res 16:29–34

    Google Scholar 

  • Shepard GM (1994) Neurobiology, 2nd edition. New York, Oxford University Press

    Google Scholar 

  • Shinohara K, Hiruma H, Funabashi T, Kimura F (2000) GABAergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 96:591–596

    Article  PubMed  CAS  Google Scholar 

  • Silvia CP, King GR, Lee TH, Xue ZY, Caron MG, Ellinwood EH (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol Pharmacol 46:51–57

    PubMed  CAS  Google Scholar 

  • Singer TP, Ramsay RR (1995) Monoamine oxidases: old friends hold many surprises. FASEB J 9:605–610

    PubMed  CAS  Google Scholar 

  • Sontheimer H (1994) Voltage dependent ion channels in glial cells. Glia 11:156–172

    Article  PubMed  CAS  Google Scholar 

  • Standifer KM, Chien CC, Wahlestedt C, Brown GP, Pasternak GW (1994) Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron 12:805–810

    Article  PubMed  CAS  Google Scholar 

  • Stephens DN, Kehr W, Duka T (1986) Anxiolytic and anxiogenic β-carbolines: tools for the study of anxiety mechanisms. In: Biggio G, Costa E (eds) GABAergic transmission and anxiety. Raven, New York, pp 91–106

    Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  • Tallman JF, Cassela JV, White G, Gallager DW (1999) GABAA receptors: diversity and its implications for CNS disease. The Neuroscientist 5:351–361

    CAS  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  PubMed  CAS  Google Scholar 

  • Thiel G. (1995) Recent breakthroughs in neurotransmitter release: paradigm for regulated exocytosis? News in Physiological Science 10:42–46

    CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850

    Article  PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  • Vardimon L, Ben-Dror I, Avisar N, Oren A, Shiftan L (1999) Glucocorticoid control of glial gene expression. J Neurobiol 40:513–527

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M (1993) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Van Patten SM (1994) Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J 8:1227–1236

    PubMed  CAS  Google Scholar 

  • Wartiovaara K, Hytonen M, Vuori M, Paulin L, Rinne J, Sariola H (1998) Mutation analysis of the glial cell line-derived neurotrophic factor gene in Parkinson’s disease. Exp Neurol 152:307–309

    Article  PubMed  CAS  Google Scholar 

  • Watkins SS, Epping-Jordan MP, Koob GF, Markou A. (1999) Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 62:743–751

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends in Neuroscience 20:92–98

    Article  CAS  Google Scholar 

  • Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci. 18:124–134

    Article  PubMed  CAS  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  PubMed  CAS  Google Scholar 

  • Yudosky SC, Hales RE (eds) (2002) The American Psychiatric Press Textbook of Neuro-psychiatry, 4th edn. American Psychiatric Publishing. Washington, DC, pp 1123–1147

    Google Scholar 

  • Zahs KR (1998) Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24:85–96

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Ramaswami M (1999) Synaptic vesicle endocytosis and recycling. In: Bellen HJ (ed) Neurotransmitter release. Oxford University Press, Oxford, pp 389–431

    Google Scholar 

  • Zhou LW, Zhang SP, Qin ZH, Weiss B (1994) In vivo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J Pharmacol Exp Ther 268:1015–1023

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horst, W.D. (2004). Biochemical and Physiological Processes in Brain Function and Drug Actions. In: Preskorn, S.H., Feighner, J.P., Stanga, C.Y., Ross, R. (eds) Antidepressants: Past, Present and Future. Handbook of Experimental Pharmacology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18500-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18500-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62135-2

  • Online ISBN: 978-3-642-18500-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics