Skip to main content

Angiotensin as a Cytokine Implicated in Accelerated Cellular Turnover

  • Chapter
  • 181 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 1))

Abstract

Several models of essential hypertension have revealed abnormalities in pathways regulating cell proliferation and programmed cell death (apoptosis). The increased proliferative phenotype found as early as birth in hypertensives is accompanied by age-dependent alterations in apoptosis, contributing to neonatal hyperplasia of the heart, aorta, and kidneys. During the course of life, accelerated cell turnover occurs and is modifiable by antihypertensive therapy, notably by inhibitors of the renin-angiotensin system. We consider the hypothesis that hypertension may be a case of accelerated aging. Part of this process may involve the defective regulation of cell proliferation in cardiovascular target organs via a putative specific senescence pathway. Candidates include abnormalities in cell cycle control genes, the renin-angiotensin pathway, and regulation of the telomerase pathway. Abnormal activity of angiotensin II-regulated Na+ transporters and augmented production of endogenous ouabain-like substances have been detected in experimental models of primary hypertension. Recent data show that both ouabain and intracellular Na+ are involved in the regulation of gene expression and apoptosis. The relevance of neonatal and early life development as a predictor of cardiovascular disease outcomes later in life is an intriguing issue that remains to be better defined. In this regard, understanding the complex genetic and epigenetic influences contributing to aging and age-related diseases will be a major goal. Because phenotype development can be analyzed longitudinally during the course of life in recombinant inbred rat strains, these models will allow a systematic approach to the molecular analysis of senescence pathway regulation, their determinants early in life, and their control by hereditary and epigenetic factors, including pharmacotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AII:

Angiotensin II

ACE:

Angiotensin-converting enzyme

BP:

Blood pressure

cGMP:

Cyclic guanosine monophosphate

chr:

Chromosome

ERG:

Early response genes

ESPI:

Endogenous Na+,K+ pump inhibitors

HSP:

Heat stress protein(s)

MAPK:

Mitogen-activated protein kinase

MOT-2:

Mortalin

NHE1:

Na+-H+ exchanger

NKCC1:

Na+,K+,C1 cotransport

NO:

Nitric oxide

PI3 K:

Polyphosphoinositide-3-kinase

PKC:

Protein kinase C

PLC-γ :

Phospholipase C

QTL:

Quantitative trait locus

RAS:

Renin-angiotensin system

REC:

Renal epithelial cells

RIS:

Recombinant inbred strains

SHR:

Spontaneously hypertensive rats

SMC:

Smooth muscle cells

VSMC:

Vascular smooth muscle cell(s)

VSMC-E1A:

E1A-adenoviral protein

References

  • Ahmad M, Theofanidis P, Medford RM et al (1998) Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 273:4616–4621

    PubMed  CAS  Google Scholar 

  • Aisner DL, Wright DE, Shay JW et al (2002) Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 12:80–85

    PubMed  CAS  Google Scholar 

  • Akar F, Skinner E, Klein JD et al (1999) Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+-K+-2C1− cotransporter in rat aorta. Am J Physiol 276:C1383–C1390

    PubMed  CAS  Google Scholar 

  • Alvarez BV, Ennis IL, De Hurtado MC et al (2002) Effects of antihypertensive therapy on cardiac sodium/hydrogen ion exchanger activity and hypertrophy in spontaneously hypertensive rats. Can J Cardiol 18:667–672

    PubMed  CAS  Google Scholar 

  • Anversa P, Olivetti G, Leri A et al (1997) Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens 6:169–176

    PubMed  CAS  Google Scholar 

  • Ariyoshi H, Okahara K, Sakon M et al (1998) Possible involvement of m-calpain in vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol 18:493–498

    PubMed  CAS  Google Scholar 

  • Arnon A, Hamlyn JM, Blaustein MP et al (2000) Na(+) entry via store-operated channels modulates Ca(2+) signaling in arterial myocytes. Am J Physiol Cell Physiol 278:C163–C173

    PubMed  CAS  Google Scholar 

  • Avdonin PV, Cheglakov IB, Tkachnuk VA (1990) Ionic permeability and regulation of receptor-operated channels in plasma membrane of human platelets. Biol Membr (Moscow) 7:12–92

    CAS  Google Scholar 

  • Aydemir-Koksoy A, Abramowizt J, Allen JC (2001) Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem 276:46605–46611

    PubMed  CAS  Google Scholar 

  • Baetz D, Haworth RS, Avkiran M et al (2002) The ERK pathway regulates Na(+)-HCO(3)(−) cotransport activity in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 283:H2102–H2109

    PubMed  CAS  Google Scholar 

  • Bagrov AY, Fedorova OV, Austin-Lane JL et al (1995) Endogenous marinobufagenin-like immunoreactive factor and Na+,K+ATPase inhibition during voluntary hypoventilation. Hypertension 26:781–788

    PubMed  CAS  Google Scholar 

  • Bai H, Pollman MJ, Inishi Y et al (1999) Regulation of vascular smooth muscle cell apoptosis. Modulation of bad by a phosphatidylinositol 3-kinase-dependent pathway. Circ Res 85:229–237

    PubMed  CAS  Google Scholar 

  • Barrett TB, Sampson P, Owens GK et al (1983) Polyploid nuclei in human artery wall smooth muscle cells. Proc Natl Acad Sci USA 80:882–885

    PubMed  CAS  Google Scholar 

  • Bascands JL, Girolami JP, Troly M et al (2001) Angiotensin II induces phenotype-dependent apoptosis in vascular smooth muscle cells. Hypertension 38:1294–1299

    PubMed  CAS  Google Scholar 

  • Bennett MR, Evan GI, Newby AC et al (1994) Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-a, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res 74:525–536

    PubMed  CAS  Google Scholar 

  • Bennett MR, Evan GI, Schwartz SM et al (1995) Apoptosis of rat vascular smooth muscle cells is regulated by p53 dependent and independent pathways. Circ Res 77:266–273

    PubMed  CAS  Google Scholar 

  • Bennett MR, Macdonald K, Chan SW et al (1998) Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res 82:704–712

    PubMed  CAS  Google Scholar 

  • Berk BC, Elder E, Mitsuka M et al (1990) Hypertrophy and hyperplasia cause differing effects on vascular smooth muscle cell Na+/H+ exchange and intracellular pH. J Biol Chem 265:19632–19637

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1984) Sodium transport and hypertension. Where are we going? Hypertension 6:445–453

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1996) Endogenous ouabain: role in the pathogenesis of hypertension. Kidney Int 49:1748–1753

    PubMed  CAS  Google Scholar 

  • Bolivar JJ, Lazaro A, Fernandez S et al (1987) Rescue of a wild-type MDCK cell by a ouabain-resistant mutant. Am J Physiol 253:C151–C161

    PubMed  CAS  Google Scholar 

  • Bonnet F, Cao Z, Cooper ME et al ( 2001) Apoptosis and angiotensin II: yet another renal regulatory system? Exp Nephrol 9:295–300

    PubMed  CAS  Google Scholar 

  • Booz GW, Day JN, Baker KM et al (2002) Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol 34:1443–1453

    PubMed  CAS  Google Scholar 

  • Bortner CD, Gomez-Angelats M, Cidlowski JA (2001) Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 276:4304–4314

    PubMed  CAS  Google Scholar 

  • Bravo R, Somoza B, Ruiz-Gayo M et al (2001) Differential effect of chronic antihypertensive treatment on vascular smooth muscle cell phenotype in spontaneously hypertensive rats. Hypertension 37:E4–E10

    PubMed  CAS  Google Scholar 

  • Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91:776–781

    PubMed  CAS  Google Scholar 

  • Bukoski RD (1990) Intracellular Ca2+ metabolism of isolated resistance arteries and cultured vascular myocytes of spontaneously hypertensive and Wistar-Kyoto normotensive rats. J Hypertens 8:37–43

    PubMed  CAS  Google Scholar 

  • Cao Y, Li H, Mu FT et al (2002) Telomerase activation causes vascular smooth muscle cell proliferation in genetic hypertension. FASEB J 16:96–98

    PubMed  CAS  Google Scholar 

  • Champagne MJ, Dumas P, Orlov SN et al (1999) Protection against necrosis but not apoptosis by HSPs in vascular smooth muscle cells: evidence for distinct modes of cell death. Hypertension 33:906–913

    PubMed  Google Scholar 

  • Cheng HF, Wang JL, Vinson GP et al (1998) Young SHR express increased type 1 angiotensin II receptors in renal proximal tubule. Am J Physiol 274:F10–F17

    PubMed  CAS  Google Scholar 

  • Choi JH, Yoo KH, Cheon HW et al (2002) Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart. Pediatr Res 52:325–332

    PubMed  CAS  Google Scholar 

  • Choy JC, Granville DJ, Hunt DW et al (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690

    PubMed  CAS  Google Scholar 

  • Chueh SC, Guh JH, Chen J et al (2001) Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    PubMed  CAS  Google Scholar 

  • Cingolani HE (1999) Na+/H+ exchange hyperactivity and myocardial hypertrophy: are they linked phenomena? Cardiovasc Res 44:462–467

    PubMed  CAS  Google Scholar 

  • Clegg KB, Sambhi MP (1989) Inhibition of epidermal growth factor-mediated DNA synthesis by a specific tyrosine kinase inhibitor in vascular smooth muscle cells of the spontaneously hypertensive rat. J Hypertens 7(Suppl 6):S144–S145

    CAS  Google Scholar 

  • Cowley Jr AW, Stoll M, Greene AS et al (2000) Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiol Genomics 2:107–115

    PubMed  CAS  Google Scholar 

  • Davis A, Hogarth K, Fernandes D et al (2003) Functional significance of protein kinase A (PKA) activation by endothelin-1 and ATP: negative regulation of SRF-dependent gene expression by PKA. Cell Signal 15:597–604

    PubMed  CAS  Google Scholar 

  • deBlois D, Viswanathan M, Su JE et al (1996) Smooth muscle DNA replication in response to angiotensin II is regulated differently in the neointima and media at different times after balloon injury in the rat carotid artery. Role of AT1 receptor expression. Arterioscler Thromb Vasc Biol 16:1130–1137

    PubMed  CAS  Google Scholar 

  • deBlois D, Tea BS, Than VD et al (1997) Smooth muscle cell apoptosis during vascular regression in spontaneously hypertensive rats. Hypertension 29:340–349

    PubMed  CAS  Google Scholar 

  • Deng AY, Dene H, Rapp JP et al (1997) Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension 30[part l]:199–202

    PubMed  CAS  Google Scholar 

  • Der Sarkissian S, Marchand EL, Duguay D et al (2003) Reversal of interstitial fibroblast hyperplasia via apoptosis in hypertensive rat heart with valsartan or enalapril. Cardiovasc Res 57:775–783

    Google Scholar 

  • Devlin AM, Gordon JM, Davidson AO et al (1995) The effects of perindopril on vascular smooth muscle polyploidy in stroke-prone spontaneously hypertensive rats. J Hyper-tens 13:211–218

    CAS  Google Scholar 

  • Devlin AM, Clark JS, Reid JL et al (2000) DNA synthesis and apoptosis in smooth muscle cells from a model of genetic hypertension. Hypertension 36:110–115

    PubMed  CAS  Google Scholar 

  • Devlin AM, Solban N, Tremblay S et al (2003) HCaRG is a novel regulator of renal epithelial cell growth and differentiation causing G2M arrest. Am J Physiol Renal Physiol 284:F753–F762

    PubMed  CAS  Google Scholar 

  • Diep QN, Li JS, Schiffrin EL (1999) In vivo study of AT(1) and AT(2) angiotensin receptors in apoptosis in rat blood vessels. Hypertension 34:617–624

    PubMed  CAS  Google Scholar 

  • Diez J, Panizo A, Hernandez M et al (1997) Cardiomyocyte apoptosis and cardiac angiotensin-converting enzyme in spontaneously hypertensive rats. Hypertension 30:1029–1034

    PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    PubMed  CAS  Google Scholar 

  • Dmitrieva RI, Doris PA (2002) Cardiotonic steroids: potential endogenous sodium pump ligands with diverse function. Exp Biol Med 227:561–569

    CAS  Google Scholar 

  • Domanico SZ, DeNagel DC, Dahlseid JN et al (1993) Cloning of the gene encoding pep-tide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13:3598–3610

    PubMed  CAS  Google Scholar 

  • Dominiczak AF, Devlin AM, Lee WK et al (1996) Vascular smooth muscle polyploidy and cardiac hypertrophy in genetic hypertension. Hypertension 27:752–759

    PubMed  CAS  Google Scholar 

  • Dulin NO, Niu J, Browning DD et al (2001) Cyclic AMP-independent activation of protein kinase A by vasoactive peptides. J Biol Chem 276:20827–20830

    PubMed  CAS  Google Scholar 

  • Dumas P, Pausova Z, Kren V et al (2000a) Contribution of autosomal loci and the Y chromosome to the stress response in rat. Hypertension 35:568–573

    PubMed  CAS  Google Scholar 

  • Dumas P, Sun Y, Corbeil G et al (2000b) Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J Hypertens 18:545–551

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    PubMed  CAS  Google Scholar 

  • Falciola J, Volet B, Anner RM et al (1994) Role of cell membrane Na,K-ATPase for survival of human lymphocytes in vitro. Biosci Rep 14:189–204

    PubMed  CAS  Google Scholar 

  • Flatt PM, Polyak K, Tang LJ et al (2000) p53-dependent expression of PIG3 during proliferation, genotoxic stress, and reversible growth arrest. Cancer Lett 156:63–72

    PubMed  CAS  Google Scholar 

  • Garrett MR, Dene H, Walder R et al (1998) Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res 8:711–723

    PubMed  CAS  Google Scholar 

  • Gilbert M, Knox S (1997) Influence of Bcl-2 overexpression on Na+/K(+)-ATPase pump activity: correlation with radiation-induced programmed cell death. J Cell Physiol 171:299–304

    PubMed  CAS  Google Scholar 

  • Golomb E, Hill MR, Brown RG et al (1994) Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells. Am J Hypertens 7:69–74

    PubMed  CAS  Google Scholar 

  • Grinstein S, Smith JD, Benedict SH et al (1989) Activation of sodium-hydrogen exchange by mitogens. In: Hoffmann JF, Schulz SG, Glebisch G (eds) Cellular and molecular biology of sodium transport. Curr Top Membr Transp Series, vol 24. Academic Press, pp 331–343

    Google Scholar 

  • Gu L, Dene H, Deng AY et al (1996) Genetic mapping of two blood pressure quantitative trait loci on rat chromosome 1. J Clin Invest 97:777–788

    PubMed  CAS  Google Scholar 

  • Guicheney P, Wauquier I, Paquet JL et al (1991) Enhanced response to growth factors and to angiotensin II of spontaneously hypertensive rat skin fibroblasts in culture. J Hypertens 9:23–27

    PubMed  CAS  Google Scholar 

  • Hadrava V, Tremblay J, Hamet P et al (1989) Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension 13:589–597

    PubMed  CAS  Google Scholar 

  • Hadrava V, Tremblay J, Sekaly RP et al (1992) Accelerated entry of aortic smooth muscle cells from spontaneously hypertensive rats into the S phase of the cell cycle. Biochem Cell Biol 70:599–604

    PubMed  CAS  Google Scholar 

  • Hall JE, Brands MW, Henegar JR (1999) Angiotensin II and long-term arterial pressure regulation: the overriding dominance of the kidney. J Am Soc Nephrol 10(Suppl 12):S258–S265

    PubMed  CAS  Google Scholar 

  • Hamada M, Nishio I, Baba A et al (1990) Enhanced DNA synthesis of cultured vascular smooth muscle cells from spontaneously hypertensive rats—difference of response to growth factor, intracellular free calcium concentration and DNA synthesizing cell cycle. Atherosclerosis 81:191–198

    PubMed  CAS  Google Scholar 

  • Hamet P (1995) Proliferation and apoptosis in hypertension. Curr Opin Nephrol Hypertens 4:1–7

    PubMed  CAS  Google Scholar 

  • Hamet P (1997) Cancer and hypertension: a potential for crosstalk? J Hypertens 15:1573–1577

    PubMed  CAS  Google Scholar 

  • Hamet P, Richard L, Dam TV et al (1995) Apoptosis in target organs of hypertension. Hypertension 26:642–648

    PubMed  CAS  Google Scholar 

  • Hamet P, Moreau P, Dam TV et al (1996a) The time window of apoptosis: a new component in the therapeutic strategy for cardiovascular remodeling. J Hypertens 14(Suppl 5):S65–S70

    CAS  Google Scholar 

  • Hamet P, Kaiser MA, Sun Y et al (1996b) HSP27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension 28:1112–1117

    PubMed  CAS  Google Scholar 

  • Hamet P, Pausova Z, Dumas P et al (1998) Newborn and adult recombinant inbred strains: a tool for the search of genetic determinants of target organ damage in hypertension. Kidney Int 53:1488–1492

    PubMed  CAS  Google Scholar 

  • Hamet P, Thorin-Trescases N, Moreau P et al (2001) Excess growth and apoptosis. Is hypertension a case of accelerated aging of cardiovascular cells? Hypertension 37:760–766

    PubMed  CAS  Google Scholar 

  • Harris EL, Grigor MR, Millar JA (1990) Differences in mitogenic responses to angiotensin II, calf serum and phorbol ester in vascular smooth muscle cells from two strains of genetically hypertensive rat. Biochem Biophys Res Commun 170:1249–1255

    PubMed  CAS  Google Scholar 

  • Harris EL, Phelan EL, Thompson CM et al (1995) Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens 13:397–404

    PubMed  CAS  Google Scholar 

  • Hatori N, Fine BP, Nakamura A et al (1987) Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem 262:5073–5078

    PubMed  CAS  Google Scholar 

  • Heessen S, Leonchiks A, Issaeva N et al (2002) Functional p53 chimeras containing the Epstein-Barr virus Gl-Ala repeat are protected from Mdm2-and HPV-E6-induced proteolysis. Proc Natl Acad Sci USA 99:1532–1537

    PubMed  CAS  Google Scholar 

  • Hilton PJ, White RW, Lord GA et al (1996) An inhibitor of the sodium pump obtained from human placenta. Lancet 348:303–305

    PubMed  CAS  Google Scholar 

  • Horita S, Zheng Y, Hara C et al (2002) Biphasic regulation of Na+-HCO3-cotransporter by angiotensin II type 1A receptor. Hypertension 40:707–712

    PubMed  CAS  Google Scholar 

  • Hou Y, Delamere NA (2002) Influence of ANG II on cytoplasmic sodium in cultured rabbit nonpigmented ciliary epithelium. Am J Physiol Cell Physiol 283:C552–C559

    PubMed  CAS  Google Scholar 

  • Intengan HD, Schiffrin EL (2000) Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36:312–318

    PubMed  CAS  Google Scholar 

  • Isaev NK, Stelmashook EV, Halle A et al (2000) Inhibition of Na(+),K(+)-ATPase activity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low potassium. Neurosci Lett 283:41–44

    PubMed  CAS  Google Scholar 

  • Ito S, Nara Y, Yamori Y (1995) Distinction of endothelial cell growth and fibrinolytic activity between WKY/Izm and SHRSP/Izm in vitro. Clin Exp Pharmacol Physiol 22(Suppl 1):S273–S274

    CAS  Google Scholar 

  • Jacob H, Lindpaintner K, Lincoln SE et al (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224

    PubMed  CAS  Google Scholar 

  • Jeanclos E, Schork NJ, Kyvik KO et al (2000) Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 36:195–200

    PubMed  CAS  Google Scholar 

  • Johnson TE, Umbenhauer DR, Hill R et al (1992) Karyotypic and phenotypic changes during in vitro aging of human endothelial cells. J Cell Physiol 150:17–27

    PubMed  CAS  Google Scholar 

  • Kang J, Posner P, Sumners C (1994) Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol 267:C1389–C1397

    PubMed  CAS  Google Scholar 

  • Kaul SC, Reddel RR, Sugihara T et al (2000) Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett 474:159–164

    CAS  Google Scholar 

  • Kawano K, Ikari A, Nakano M et al (2002) Phosphatidylinositol 3-kinase mediates inhibitory effect of angiotensin II on sodium/glucose cotransporter in renal epithelial cells. Life Sci 71:1–13

    PubMed  CAS  Google Scholar 

  • King FW, Wawrzynow A, Hohfeld J et al (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20:6297–6305

    PubMed  CAS  Google Scholar 

  • Korniszewski L, Nowak R, Okninska-Hoffmann E et al (2001) Wiedemann-Rautenstrauch (neonatal progeroid) syndrome: new case with normal telomere length in skin fibroblasts. Am J Med Genet 103:144–148

    PubMed  CAS  Google Scholar 

  • Kren V, Pravenec M, Lu S et al (1997) Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest 99:577–581

    PubMed  CAS  Google Scholar 

  • Krushkal J, Xiong M, Ferrell R et al (1998) Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum Mol Genet 7:1379–1383

    PubMed  CAS  Google Scholar 

  • Kubbutat MH, Vousden KH (1997) Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 17:460–468

    PubMed  CAS  Google Scholar 

  • Kusuhara M, Takahashi E, Peterson TE et al (1998) p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H+ exchange and ERK1/2. Circ Res 83:824–831

    PubMed  CAS  Google Scholar 

  • LaPointe MS, Ye M, Moe OW et al (1995) Na+/H+ antiporter (NHE-1 isoform) in cultured vascular smooth muscle from the spontaneously hypertensive rat. Kidney Int 47:78–87

    PubMed  CAS  Google Scholar 

  • Ledbetter ML, Young GJ, Wright ER (1986) Cooperation between epithelial cells demonstrated by potassium transfer. Am J Physiol 250:C306–C313

    PubMed  CAS  Google Scholar 

  • Lee RM, Conyers RB, Kwan CY (1992) Incidence of multinucleated and polyploid aortic smooth muscle cells cultured from different age groups of spontaneously hypertensive rats. Can J Physiol Pharmacol 70:1496–1501

    PubMed  CAS  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    PubMed  CAS  Google Scholar 

  • Lucchesi PA, Bell JM, Willis LS et al (1996) Ca(2+)-dependent mitogen-activated protein kinase activation in spontaneously hypertensive rat vascular smooth muscle defines a hypertensive signal transduction phenotype. Circ Res 78:962–970

    PubMed  CAS  Google Scholar 

  • Ludens JH, Clark MA, DuCharme DW et al (1991) Purification of an endogenous digitalis-like factor from human plasma for structural analysis. Hypertension 17:923–929

    PubMed  CAS  Google Scholar 

  • Ly DH, Lockhart DJ, Lerner RA et al (2000) Mitotic misregulation and human aging. Science 287:2486–2492

    PubMed  CAS  Google Scholar 

  • Manunta P, Stella P, Rivera R et al (1999) Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension 34:450–456

    PubMed  CAS  Google Scholar 

  • Marklund L, Henriksson R, Grankvist K (1999) K+-efflux modulation of cisplatin-induced apoptosis and cytotoxicity to cultured mesothelioma cells. Invest Ophthalmol Visual Sci 38:S109 (Abstract)

    Google Scholar 

  • Matsukawa T, Ichikawa I (1997) Biological functions of angiotensin and its receptors. Ann Rev Physiol 59:395–412

    Google Scholar 

  • McConkey DJ, Lin Y, Nutt LK et al (2000) Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 60:3807–3812

    PubMed  CAS  Google Scholar 

  • Moreau P, Tea BS, Dam TV et al (1997) Altered balance between cell replication and apoptosis in hearts and kidneys of newborn SHR. Hypertension 30[Part 2]:720–724

    PubMed  CAS  Google Scholar 

  • Morris K (2002) Targeting the myocardial sodium-hydrogen exchange for treatment of heart failure. Expert Opin Ther Targets 6:291–298

    PubMed  Google Scholar 

  • Moudgil R, Musat-Marcu S, Xu Y et al (2002) Increased AT(2)R protein expression but not increased apoptosis during cardioprotection induced by AT(1)R blockade. Can J Cardiol 18:1107–1116

    PubMed  CAS  Google Scholar 

  • Mueller C, Baudler S, Welzel H et al (2002) Identification of a novel redox-sensitive gene, Id3, which mediates angiotensin II-induced cell growth. Circulation 105:2423–2428

    PubMed  CAS  Google Scholar 

  • Nakayama KI, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the Gl-S transition by proteolysis of cyclin E and p27Kipl. Biochem Biophys Res Commun 282:853–860

    PubMed  CAS  Google Scholar 

  • Nakayama M, Fukuda N, Watanabe Y et al (1999) Low dose of eicosapentaenoic acid inhibits the exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats through suppression of transforming growth factor-beta. J Hyper-tens 17:1421–1430

    CAS  Google Scholar 

  • Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1–6

    PubMed  CAS  Google Scholar 

  • Ogihara T, Hata T, Tanaka K et al (1986) Hutchinson-Gilford progeria syndrome in a 45-year-old man. Am J Med 81:135–138

    PubMed  CAS  Google Scholar 

  • Okorokov AL, Ponchel F, Milner J (1997) Induced N-and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53. EMBO J 16:6008–6017

    PubMed  CAS  Google Scholar 

  • Olej B, dos Santos NF, Leal L et al (1998) Ouabain induces apoptosis on PHA-activated lymphocytes. Biosci Rep 18:1–7

    PubMed  CAS  Google Scholar 

  • Orlov SN, Pokudin NI, Kotelevtsev YV et al (1989) Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes. J Membr Biol 107:105–107

    PubMed  CAS  Google Scholar 

  • Orlov SN, Resink TJ, Bernhardt J et al (1992) Na+-K+ pump and Na+-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation. J Hypertens 10:733–740

    PubMed  CAS  Google Scholar 

  • Orlov SN, Dam TV, Tremblay J et al (1996) Apoptosis in vascular smooth muscle cells: role of cell shrinkage. Biochem Biophys Res Commun 221:708–715

    PubMed  CAS  Google Scholar 

  • Orlov SN, Adragna NC, Adarichev VA et al (1999a) Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am J Physiol 276:C511–C536

    PubMed  CAS  Google Scholar 

  • Orlov SN, deBlois D, Tremblay J et al (1999b) Apoptosis in hypertension: mechanisms and implications in vascular remodeling. Cardiovasc Risk Factors 9:67–79

    Google Scholar 

  • Orlov SN, Thorin-Trescases N, Dulin NO et al (1999c) Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth cells in a site upstream of caspase-3. Cell Death Differ 6:661–672

    PubMed  CAS  Google Scholar 

  • Orlov SN, Thorin-Trescases N, Kotelevtsev SV et al (1999d) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    PubMed  CAS  Google Scholar 

  • Orlov SN, Taurin S, Tremblay J et al (2001) Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodelling. J Hypertens 19:1559–1565

    PubMed  CAS  Google Scholar 

  • Orlov SN, Tremblay J, deBlois D et al (2002) Genetics of programmed cell death and proliferation. Semin Nephrol 22:161–171

    PubMed  CAS  Google Scholar 

  • Orlov SN, Pchejetski DV, Sarkissian SD et al (2003) [3H]Thymidine labelling of DNA triggers apoptosis potentiated by ElA-adenoviral protein. Apoptosis 8:199–208

    PubMed  CAS  Google Scholar 

  • Ortiz PA, Garvin JL (2001) Intrarenal transport and vasoactive substances in hypertension. Hypertension 38:621–624

    PubMed  CAS  Google Scholar 

  • Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol 257:H1755–H1765

    PubMed  CAS  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  • Pang SC, Long C, Poirier M et al (1986) Cardiac and renal hyperplasia in newborn genetically hypertensive rats. J Hypertens 4(Suppl 3):S119–S122

    CAS  Google Scholar 

  • Panizo-Santos A, Sola JJ, Pardo-Mindan FJ et al (1995) Angiotensin converting enzyme inhibition prevents polyploidization of cardiomyocytes in spontaneously hypertensive rats with left ventricular hypertrophy. J Pathol 177:431–437

    PubMed  CAS  Google Scholar 

  • Paquet JL, Baudouin-Legros M, Marche P et al (1989) Enhanced proliferating activity of cultured smooth muscle cells from SHR. Am J Hypertens 2:108–110

    PubMed  CAS  Google Scholar 

  • Park WY, Hwang CI, Kang MJ et al (2001) Gene profile of replicative senescence is different from progeria or elderly donor. Biochem Biophys Res Commun 282:934–939

    PubMed  CAS  Google Scholar 

  • Pchejetski D, Taurin S, Der Sarkissian S et al (2003) Inhibition of Na+,K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem Biophys Res Commun 301:735–744

    PubMed  CAS  Google Scholar 

  • Peiro C, Angulo J, Llergo JL et al (1997) Angiotensin II mediates cell hypertrophy in vascular smooth muscle cultures from hypertensive Ren-2 transgenic rats by an amiloride-and furosemide-sensitive mechanism. Biochem Biophys Res Commun 240:367–371

    PubMed  CAS  Google Scholar 

  • Peng Y, Chen L, Li C et al (2001) Inhibition of MDM 2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 276:40583–40590

    PubMed  CAS  Google Scholar 

  • Penning LC, Denecker G, Vercammen D et al (2000) A role for potassium in TNFinduced apoptosis and gene-induction in human and rodent tumour cell lines. Cytokine 12:747–750

    PubMed  CAS  Google Scholar 

  • Phan VN, Kusuhara M, Lucchesi PA et al (1997) A 90-kD Na(+)-H+ exchanger kinase has increased activity in spontaneously hypertensive rat vascular smooth muscle cells. Hypertension 29:1265–1272

    PubMed  CAS  Google Scholar 

  • Piechaczyk M, Blanchard JM (1994) c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17:93–131

    PubMed  CAS  Google Scholar 

  • Pochampally R, Fodera B, Chen L et al (1999) Activation of an MDM 2-specific caspase by p53 in the absence of apoptosis. J Biol Chem 274:15271–15277

    PubMed  CAS  Google Scholar 

  • Pollman MJ, Yamada T, Horiuchi M et al (1996) Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 79:748–756

    PubMed  CAS  Google Scholar 

  • Postnov YV, Orlov SN (1985) Ion transport across plasma membrane in primary hypertension. Physiol Rev 65(4):904–945

    PubMed  CAS  Google Scholar 

  • Pravenec M, Klir P, Kren V et al (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7:217–222

    PubMed  CAS  Google Scholar 

  • Pravenec M, Gauguier D, Schott JJ et al (1995) Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 96:1973–1978

    PubMed  CAS  Google Scholar 

  • Rangel LB, Caruso-Neves C, Lara LS et al (2002) Angiotensin II stimulates renal proximal tubule Na(+)-ATPase activity through the activation of protein kinase C. Biochim Biophys Acta 1564:310–316

    PubMed  CAS  Google Scholar 

  • Rivard A, Andres V (2000) Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histol Histopathol 15:557–571

    PubMed  CAS  Google Scholar 

  • Robey RB, Ruiz OS, Espiritu DJ et al (2002) Angiotensin II stimulation of renal epithelial cell Na/HC03 cotransport activity: a central role for Src family kinase/classic MAPK pathway coupling. J Membr Biol 187:135–145

    PubMed  CAS  Google Scholar 

  • Rosman NP, Anselm I, Bhadelia RA (2001) Progressive intracranial vascular disease with strokes and seizures in a boy with progeria. J Child Neurol 16:212–215

    PubMed  CAS  Google Scholar 

  • Rosskopf D, Dusing R, Siffert W (1993) Membrane sodium-proton exchange and primary hypertension. Hypertension 21:607–617

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M et al (2000) Angiotensin II activates nuclear transcription factor kb through AT1 and AT2 in vascular smooth muscle cells. Circ Res 86:1266–1272

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M et al (2001) Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 38:1382–1387

    PubMed  CAS  Google Scholar 

  • Sachinidis A, Seul C, Ko Y et al (1996) Effect of the Na+/H+ antiport inhibitor Hoe 694 on the angiotensin II-induced vascular smooth muscle cell growth. Br J Pharmacol 119:787–796

    PubMed  CAS  Google Scholar 

  • Saltis J, Bobik A (1992) Vascular smooth muscle growth in genetic hypertension: evidence for multiple abnormalities in growth regulatory pathways. J Hypertens 60:635–644

    Google Scholar 

  • Sarkar PK, Shinton RA (2001) Hutchinson-Guilford progeria syndrome. Postgrad Med J 77:312–317

    PubMed  CAS  Google Scholar 

  • Sato A, Ozawa K (1977) Effect of ouabain on the hyperosmolarity tolerant cells from rat kidney. Jpn J Pharmacol 27:168–170

    PubMed  CAS  Google Scholar 

  • Scott-Burden T, Resink TJ, Baur U et al (1989) Epidermal growth factor responsiveness in smooth muscle cells from hypertensive and normotensive rats. Hypertension 13:295–304

    PubMed  CAS  Google Scholar 

  • Sich B, Kirch U, Tepel M et al (1996) Pulse pressure correlates in humans with a proscillaridin A immunoreactive compound. Hypertension 27:1073–1078

    PubMed  CAS  Google Scholar 

  • Siffert W, Dusing R (1995) Sodium-proton exchange and primary hypertension. An update. Hypertension 26:649–655

    CAS  Google Scholar 

  • Slagboom PE, Heijmans BT, Beekman M et al (2000) Genetics of human aging. The search for genes contributing to human longevity and diseases of the old. Ann NY Acad Sci 908:50–63

    PubMed  CAS  Google Scholar 

  • Smith JB, Smith L (1987) Na+/K+/Cl cotransport in cultured vascular smooth muscle cells: stimulation by angiotensin II and calcium ionophores, inhibition by cyclic AMP and calmodulin antagonists. J Membr Biol 99:51–63

    PubMed  CAS  Google Scholar 

  • Solban N, Jia HP, Richard S et al (2000) HCaRG, a novel calcium-regulated gene coding for a nuclear protein, is potentially involved in the regulation of cell proliferation. J Biol Chem 275:32234–32243

    PubMed  CAS  Google Scholar 

  • Stehbens WE, Delahunt B, Shozawa T et al (2001) Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc Pathol 10:133–136

    PubMed  CAS  Google Scholar 

  • Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: new insights into an old system. Regul Pept 99:175–182

    PubMed  CAS  Google Scholar 

  • Stoll M, Steckelings UM, Paul M et al (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657

    PubMed  CAS  Google Scholar 

  • Stoll M, Cowley AW Jr, Tonellato PJ et al (2001) A genomic-systems biology map for cardiovascular function. Science 294:1723–1726

    PubMed  CAS  Google Scholar 

  • Sylvester AM, Chen D, Krasinski K et al (1998) Role of c-fos and E2F in the induction of cyclin A transcription and vascular smooth muscle cell proliferation. J Clin Invest 101:940–948

    PubMed  CAS  Google Scholar 

  • Tamai KT, Monaco L, Nantel F et al (1997) Coupling signalling pathways to transcriptional control: nuclear factors responsive to cAMP. Recent Prog Horm Res 52:121–139

    PubMed  CAS  Google Scholar 

  • Tanase H, Yamori Y, Hansen CT et al (1982) Heart size in inbred strains of rats. II: Genetic determination of the development of cardiovascular enlargement in rats. Hypertension 4:864–872

    PubMed  CAS  Google Scholar 

  • Taurin S, Seyrantepe V, Orlov SN et al (2002a) Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 91:915–922

    PubMed  CAS  Google Scholar 

  • Taurin S, Dulin NO, Pchejetski D et al (2002b) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J Physiol 543:835–847

    PubMed  CAS  Google Scholar 

  • Tea BS, Dam TV, Moreau P et al (1999) Apoptosis during regression of cardiac hypertrophy in spontaneously hypertensive rats. Temporal regulation and spatial heterogeneity. Hypertension 34:229–235

    PubMed  CAS  Google Scholar 

  • Tea BS, Der Sarkissian S, Touyz RM et al (2000) Pro-apoptotic and growth inhibitory role of angiotensin II type 2 receptor in vascular smooth muscle cells of spontaneously hypertensive rats in vivo. Hypertension 35:1069–1073

    PubMed  CAS  Google Scholar 

  • Thomas D, Harris PJ, Morgan TO (1990) Altered responsiveness of proximal tubule fluid reabsorption of peritubular angiotensin II in spontaneously hypertensive rats. J Hypertens 8:407–410

    PubMed  CAS  Google Scholar 

  • Thorin-Trescases N, deBlois D, Hamet P (2001) Evidence of an altered in vivo vascular cell turnover in spontaneously hypertensive rats and its modulation by long-term antihypertensive treatment. J Cardiovasc Pharmacol 38:764–774

    PubMed  CAS  Google Scholar 

  • Touyz RM, Schiffrin EL (1997) Angiotensin II regulates vascular smooth muscle cell pH, contraction, and growth via tyrosine kinase-dependent signaling pathways. Hypertension 30:222–229

    PubMed  CAS  Google Scholar 

  • Touyz RM, Schiffrin EL (1999) Activation of the Na(+)-H+ exchanger modulates angiotensin II-stimulated Na(+)-dependent Mg2+ transport in vascular smooth muscle cells in genetic hypertension. Hypertension 34:442–449

    PubMed  CAS  Google Scholar 

  • Touyz RM, Tolloczko B, Schiffrin EL (1994) Mesenteric vascular smooth muscle cells from spontaneously hypertensive rats display increased calcium responses to angiotensin II but not to endothelin-1. J Hypertens 12:663–673

    PubMed  CAS  Google Scholar 

  • Touyz RM, Chen X, Tabet F et al (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205–1213

    PubMed  CAS  Google Scholar 

  • Tremblay J, Hadrava V, Kruppa U et al (1992) Enhanced growth-dependent expression of TGFbl and hsp70 genes in aortic smooth muscle cells from spontaneously hypertensive rats. Can J Physiol Pharmacol 70:565–572

    PubMed  CAS  Google Scholar 

  • Tsuganezawa H, Preisig PA, Alpern RJ (1998) Dominant negative c-Src inhibits angiotensin II induced activation of NHE3 in OKP cells. Kidney Int 54:394–398

    PubMed  CAS  Google Scholar 

  • Tsuruoka S, Nishiki K, Sugimoto K et al (2001) Chronotherapy with active vitamin D3 in aged stroke-prone spontaneously hypertensive rats, a model of osteoporosis. Eur J Pharmacol 428:287–293

    PubMed  CAS  Google Scholar 

  • Tymiak AA, Norman JA, Bolgar M et al (1993) Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc Natl Acad Sci USA 90:8189–8193

    PubMed  CAS  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    PubMed  CAS  Google Scholar 

  • Uehara Y, Numabe A, Kawabata Y et al (1991) Rapid smooth muscle cell growth and endogenous prostaglandin system in spontaneously hypertensive rats. Am J Hypertens 4:806–814

    PubMed  CAS  Google Scholar 

  • Urenjak J, Obrenovitch TP (1996) Pharmacological modulation of voltage-gated Na+ channels: a rational and effective strategy against ischemic brain damage. Pharmacol Rev 48:22–67 (Abstract)

    Google Scholar 

  • Venance SL, Watson MH, Wigle DA et al (1993) Differential expression and activity of p34cdc2 in cultured aortic adventitial fibroblasts derived from spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens 11:483–489

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y et al (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268:6615–6621

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Sugimoto Y et al (1993b) Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J Biol Chem 268:22239–22242

    PubMed  CAS  Google Scholar 

  • Walsh RA, Dorn II GW (1998) Growth and hypertrophy of the heart and blood vessels. McGraw-Hill, New York

    Google Scholar 

  • Walter SV, Hamet P (1986) Enhanced DNA synthesis in heart and kidney of newborn spontaneously hypertensive rats. Hypertension 8:520–525

    PubMed  CAS  Google Scholar 

  • Watanabe T, Hashimoto M, Okuyama S et al (1999) Effects of targeted disruption of the mouse angiotensin II type 2 receptor gene on stress-induced hyperthermia. J Physiol 515(Part 3):881–885

    PubMed  CAS  Google Scholar 

  • Wax SD, Tsao L, Lieb ME et al (1996) SM-20 is a novel 40-kd protein whose expression in the arterial wall is restricted to smooth muscle. Lab Invest 74:797–808

    PubMed  CAS  Google Scholar 

  • Wolf G, Harendza S, Schroeder R et al (2002) Angiotensin II’s antiproliferative effects mediated through AT2-receptors depend on down-regulation of SM-20. Lab Invest 82:1305–1317

    PubMed  CAS  Google Scholar 

  • Yamagata K, Nara Y, Tagami M et al (1995) Demonstration of hereditarily accelerated proliferation in astrocytes derived from spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 22:605–609

    PubMed  CAS  Google Scholar 

  • Yamori Y, Igawa T, Kanbe T et al (1981) Mechanisms of structural vascular changes in genetic hypertension: analyses on cultured vascular smooth muscle cells from spontaneously hypertensive rats. Clin Sci 61:121s–123s

    PubMed  Google Scholar 

  • Ye M, Flores G, Batlle D (1996) Angiotensin II and angiotensin-(l-7) effects on free cytosolic sodium, intracellular pH, and the Na(+)-H+ antiporter in vascular smooth muscle. Hypertension 27:72–78

    PubMed  CAS  Google Scholar 

  • Yeh JY, Huang WJ, Kan SF et al (2001) Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J Urol 166:1937–1942

    PubMed  CAS  Google Scholar 

  • Zhou X, Jiang G, Zhao A et al (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem Biophys Res Commun 285:46–51

    PubMed  CAS  Google Scholar 

  • Zhu DL, Herembert T, Marche P (1991) Increased proliferation of adventitial fibroblasts from spontaneously hypertensive rat aorta. J Hypertens 9:1161–1168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamet, P., Orlov, S.N., deBlois, D., Sun, Y., Kren, V., Tremblay, J. (2004). Angiotensin as a Cytokine Implicated in Accelerated Cellular Turnover. In: Unger, T., Schölkens, B.A. (eds) Angiotensin Vol. I. Handbook of Experimental Pharmacology, vol 163 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18495-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18495-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40640-2

  • Online ISBN: 978-3-642-18495-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics