Skip to main content

Angiotensin-(1–7). Its Contribution to Arterial Pressure Control Mechanisms

  • Chapter
Book cover Angiotensin Vol. I

Abstract

A formidable body of evidence accumulated to date reveals the pleio-tropic actions of the renin-angiotensin system and its role in cardiovascular medicine. The characterization of the biological actions of angiotensin-(1-7) expanded knowledge of the endogenous control mechanisms regulating the actions of angiotensin II and revealed alternate enzymatic pathways for the processing of angiotensin I and angiotensin II. The following chapter reviews the tissue-specific pathways for formation and metabolism of this member of the renin-angiotensin system as well as its localization within brain, renal, and cardiac tissue. The unique actions of angiotensin-(1-7) in general oppose those of angiotensin II, and the preponderance of data identifies the regulation of the balance between the two peptides as important to overall cardiovascular health. We emphasize the physiological actions of the peptide in vascular, neural, and renal systems and provide a comprehensive review of its trophic and signaling mechanisms. The current status of the receptors mediating the actions of the peptide and the potential for non-receptor mechanisms are also presented. Finally, we discuss the significance of angiotensin-(1-7) in human disease, based on evidence emerging from recent studies suggesting that deficits in angiotensin-(1-7) are associated with hypertension in specific subpopulations of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    PubMed  CAS  Google Scholar 

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FAO, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626

    PubMed  CAS  Google Scholar 

  • Allred AJ, Diz DI, Ferrario CM, Chappell, MC (2000) Pathways for angiotensin-(1-7) metabolism in pulmonary and renal tissues. Am J Physiol 279:F841–F850

    CAS  Google Scholar 

  • Almeida AP, Frabregas BC, Madureira MM, Santos RJ, Campagnole-Santos MJ, Santos RA (2000) Angiotensin-(1-7) potentiates the coronary vasodilatory effect of bradykinin in the isolated rat heart. Braz J Med Biol Res 33:709–713

    PubMed  CAS  Google Scholar 

  • Ambuhl P, Felix D, Imboden H, Khosla MC, Ferrario CM (1992) Effects of angiotensin analogues and angiotensin receptor antagonists on paraventricular neurones. Regul Pept 38:111–120

    PubMed  CAS  Google Scholar 

  • Ambuhl P, Felix D, Khosla MC (1994) (7-D-ALA)-Angiotensin-(1-7): selective antagonism of angiotensin-(1-7) in the rat para ventricular nucleus. Brain Res 35:289–291

    CAS  Google Scholar 

  • Anastasopoulos F, Leung R, Kladis A, James GM, Briscoe TA, Gorski TP, Campbell DJ (1998) Marked difference between angiotensin-converting enzyme and neutral endo-peptidase inhibition in vivo by a dual inhibitor of both enzymes. J Pharmacol Exp Ther 284:799–805

    PubMed  CAS  Google Scholar 

  • Andreatta-Van Leyen S, Romero MF, Khosla MC, Douglas JG (1993) Modulation of phos-pholipase A2 activity and sodium transport by angiotensin-(1-7). Kidney Int 44:932–936

    PubMed  CAS  Google Scholar 

  • Averill DB, Diz DI (1999) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–128

    Google Scholar 

  • Averill DB, Tsuchihashi T, Khosla MC, Ferrario CM (1994) Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitato-ry response evoked by angiotensin II and L-glutamate in rostral ventrolateral medulla. Brain Res 665:245–252

    PubMed  CAS  Google Scholar 

  • Balcells E, Meng QC, Hageman GR, Palmer RW, Durand JN, Dell’Italia LJ (1996) Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol 40:H417–H421

    Google Scholar 

  • Baltatu O, Fontes MA, Campagnole-Santos MJ, Caligiorni S, Ganten D, Santos RA, Bader M (2001) Alterations of the renin-angiotensin system at the RVLM of transgenic rats with low brain angiotensinogen. Am J Physiol Regul Integr Comp Physiol 280:R428–R433

    PubMed  CAS  Google Scholar 

  • Baracho NC, Simoes-e-Silva A, Khosla MC, Santos RA (1998) Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1-7) in water-loaded rats. Braz J Med Biol Res 31:1221–1227

    PubMed  CAS  Google Scholar 

  • Barnes KL, Knowles WD, Ferrario CM (1990) Angiotensin II and angiotensin-(l–7) excite neurons in the canine medulla in vitro. Brain Res Bull 24:275–280

    PubMed  CAS  Google Scholar 

  • Bayorh MA, Eatman D, Walton M, Socci RR, Thierry-Palmer M, Emmett N (2002) A-779 attenuates angiotensin-(1-7) depressor response in salt-induced hypertensive rats. Peptides 23:57–64

    PubMed  CAS  Google Scholar 

  • Benter IF, Diz DI, Ferrario CM (1993) Cardiovascular actions of angiotensin-(1-7). Peptides 14:679–684

    PubMed  CAS  Google Scholar 

  • Benter IF, Diz DI, Ferrario CM (1995a) Pressor and reflex sensitivity is altered in spontaneously hypertensive rats treated with angiotensin-(1-7). Hypertension 26:1138–1144

    PubMed  CAS  Google Scholar 

  • Benter IF, Ferrario CM, Morris M, Diz DI (1995b) Antihypertensive actions of angioten-sin-(I-7) in spontaneously hypertensive rats. Am J Physiol 269:H313–H319

    PubMed  CAS  Google Scholar 

  • Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R (1999) Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation 99:2034–2040

    PubMed  CAS  Google Scholar 

  • Block CH, Santos RAS, Brosnihan KB, Ferrario CM (1988) Immunocytochemical localization of angiotensin-(1-7) in the rat forebrain. Peptides 9:1395–1401

    PubMed  CAS  Google Scholar 

  • Borges EL, Cabral BM, Braga AA, Neves MJ, Santos RA, Rogana E (2002) Effect of angio-tensin-(l–7) on jejunal absorption of water in rats. Peptides 23:51–56

    PubMed  CAS  Google Scholar 

  • Bouley R, Perodin J, Plante H, Rihakova L, Bernier SG, Maletinska L, Guillemette G, Escher E (1998) N-and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor. Eur J Pharmacol 343:323–331

    PubMed  CAS  Google Scholar 

  • Brenner BM, Cooper ME, de Z, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S, RENAAL Study Investigators (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    PubMed  CAS  Google Scholar 

  • Britto RR, Santos RAS, Fagundes-Moura CR, Khosla MC, Campangnole-Santos MJ (1997) Role of angiotensin-(1-7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension 30:549–556

    PubMed  CAS  Google Scholar 

  • Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528

    PubMed  CAS  Google Scholar 

  • Brosnihan KB, Li P, Tallant EA, Ferrario CM (1998) Angiotensin-(l–7): a novel vasodilator of the coronary circulation. Biol Res 31:227–234

    PubMed  CAS  Google Scholar 

  • Bumpus FM, Catt KJ, Chiu AT, DeGasparo M, Goodfriend T, Husain A, Peach MJ, Taylor DG Jr, Timmermans PBWM (1991) Nomenclature for angiotensin receptors: A report of the Nonmenclature Committee for the Council for High Blood Pressure Research. Hypertension 17:720–721

    PubMed  CAS  Google Scholar 

  • Bumpus FM, Khairallah PA, Arakawa K, Page IH, Smeby RR (1961) The relationship of structure to pressor and oxytocic actions of isoleucine angiotensin octapeptide and various analogues. Biochim Biophys Acta 46:38–44

    CAS  Google Scholar 

  • Burgelova M, Kramer HJ, Teplan V, Velickova G, Vitko S, Heller J, Maly J: Cervenka L (2002) Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat. Kidney Blood Press Res 25:202–210

    PubMed  Google Scholar 

  • Calka J, Block CH (1993) Angiotensin-(1-7) and nitric oxide synthase in the hypothala-mo-neurohypophysial system. Brain Res Bull 30:677–685

    PubMed  CAS  Google Scholar 

  • Campagnole-Santos MJ, Diz DI, Ferrario CM (1990) Actions of angiotensin peptides after partial denervation of the solitary tract nucleus. Hypertension (Suppl I) 15:1-34–1-39

    Google Scholar 

  • Campagnole-Santos MJ, Diz DI, Santos RAS, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Physiol 257:H324–H329

    PubMed  CAS  Google Scholar 

  • Campagnole-Santos MJ, Heringer SB, Batista EN, Khosla MC, Santos RAS (1992) Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol 263:R89–R94

    PubMed  CAS  Google Scholar 

  • Campbell DJ, Anastasopoulos F, Duncan AM, James GM, Kladis A, Briscoe TA (1998) Effects of neutral endopeptidase inhibition and combined angiotensin converting enzyme and neutral endopeptidase inhibition on angiotensin and bradykinin peptides in rats. J Pharmacol Exp Ther 287:567–577

    PubMed  CAS  Google Scholar 

  • Caruso-Neves C, Lara LS, Rangel LB, Grossi AL, Lopes AG (2000) Angiotensin-(1-7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophys Acta 1467:189–197

    PubMed  CAS  Google Scholar 

  • Chansel D, Vandermeersch S, Oko A, Curat C, Ardaillou R (2001) Effects of angiotensin IV and angiotensin-(l–7) on basal and angiotensin II-stimulated cytosolic Ca2+ in mesangial cells. Eur J Pharmacol 414:165–175

    PubMed  CAS  Google Scholar 

  • Chappell MC (2002) Inhibition of Na+, K+-ATPase activity by angiotensin-(1-7) in rat proximal tubules is attenuated by cytochrome P450 blockade. FASEB 16:A496

    Google Scholar 

  • Chappell MC, Allred AJ, Ferrario CM (2001) Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transplant 16:22–26

    PubMed  CAS  Google Scholar 

  • Chappell MC, Brosnihan KB, Diz DI, Ferrario CM (1989) Identification of angiotensin-(1-7) in rat brain: evidence for differential processing of angiotensin peptides. J Biol Chem 264:16518–16523

    PubMed  CAS  Google Scholar 

  • Chappell MC, Gomez, MN, Pirro NT, Ferrario CM (2000) Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. Hypertension 35:348–352

    PubMed  CAS  Google Scholar 

  • Chappell MC, Jacobsen DW, Tallant EA (1995) Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42 J cells. Peptides 16:741–747

    PubMed  CAS  Google Scholar 

  • Chappell MC, Jung F, Gallagher PE, Averill DB, Crackower MA, Penninger JM, Ferrario CM (2002) Omapatrilat treatment is associated with increased ACE-2 and angioten-sin-(1–7) in spontaneously hypertensive rats. Hypertension 40:409

    Google Scholar 

  • Chappell MC, Pirro NT, Sykes A, Ferrario CM (1998) Metabolism of angiotensin-(1-7) by angiotensin converting enzyme. Hypertension 31:362–366

    PubMed  CAS  Google Scholar 

  • Chappell MC, Tallant EA, Brosnihan KB, Ferrario CM (1994) Conversion of angiotensin I to angiotensin-(1-7) by thimet oligopeptidase (EC 3.4.24.15) in vascular smooth muscle cells. J Vasc Med Biol 5:129–137

    Google Scholar 

  • Chaves GZ, Caligiorne SM, Santos RAS, Khosla MC, Campagnole-Santos MJ (2000) Modulation of the baroreflex control of heart rate by angiotensin-(1-7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J Hypertens 18:1841–1848

    PubMed  CAS  Google Scholar 

  • Clark MA, Tallant EA, Diz DI (2001a) Downregulation of the AT1A receptor by pharmacologic concentrations of angiotensin-(1-7). J Cardiovasc Pharmacol 37:437–448

    PubMed  CAS  Google Scholar 

  • Clark MA, Tommasi EN, Bosch SM, Tallant EA, Diz DI (2003) Angiotensin-(1-7) reduces renal angiotensin II receptors through a cyclooxygenase dependent pathway. J Cardiovasc Pharmacol (in press)

    Google Scholar 

  • Clark MA, Diz DI, Tallant EA (2001b) Angiotensin-(1-7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells. Hypertension 37:1141–1146

    PubMed  CAS  Google Scholar 

  • Corvol P, Michaud A, Soubrier F, Williams TA (1995) Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens 13:S3–S10

    CAS  Google Scholar 

  • Couto AS, Baltatu O, Santos RA, Ganten D, Bader M, Campagnole-Santos MJ (2002) Differential effects of angiotensin II and angiotensin-(1-7) at the nucleus tractus solitarii of transgenic rats with low brain angiotensinogen. J Hypertens 20:919–925

    PubMed  CAS  Google Scholar 

  • Couto AS, Santos RAS, Campagnole-Santos MJ, DeMinas Gerais UF, Horizonte B, Brazil MG (1998) Cardiovascular effects produced by angiotensin II and angiotensin-(1-7) in different areas of the nucleus tractus solitary. J Hypertens 16[Suppl 2]:S169

    Google Scholar 

  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santo AJ, da Costa J, Zhang L, Pei Y, Scholey J, Bray MR, Ferrario CM, Backx PH, Manou-kian AS, Chappell MC, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    PubMed  CAS  Google Scholar 

  • Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, deFaire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H (2002) Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995–1003

    PubMed  CAS  Google Scholar 

  • Davie AP, McMurray JJ (1999) Effect of angiotensin-(1-7) and bradykinin in patients with heart failure treated with an ACE inhibitor. Hypertension 34:457–460

    PubMed  CAS  Google Scholar 

  • de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PBMWM (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25:924–927

    PubMed  CAS  Google Scholar 

  • Deddish PA, Marcic B, Jackman HL, Wang HZ, Skidgel RA, Erdos EG (1998) N-domain specific substrate and C-domain inhibitors of angiotensin converting enzyme. Hypertension 31:912–917

    PubMed  CAS  Google Scholar 

  • DelliPizzi A, Hilchey SD, Bell-Quilley CP (1994) Natriuretic action of angiotensin (1–7). Br J Pharmacol 111:1–3

    PubMed  CAS  Google Scholar 

  • Diz DI, Barnes KL, Ferrario CM (1984) Hypotensive actions of microinjections of angiotensin II into the dorsal motor nucleus of the vagus. J Hypertens (Suppl 3) 2:53–56

    CAS  Google Scholar 

  • Diz DI, Falgui B, Bosch SM, Westwood BM, Kent J, Ganten D, Ferrario CM (1997) Hypothalamic substance P release: Attenuated angiotensin responses in mRen2(27) transgenic rats. Hypertension 29:510–513

    PubMed  CAS  Google Scholar 

  • Diz DI, Ferrario CM (1996) Angiotensin receptor heterogeneity in dorsal medulla oblongata as defined by angiotensin-(1-7). In: Raizada MR, Phillips MI, Summers KM (eds) Recent advances in cellular and molecular aspects of angiotensin receptors. Advances in experimental biology and medicine. Plenum Press, New York, pp 225–235

    Google Scholar 

  • Diz DI, Jessup JA, Westwood BM, Bosch SM, Vinsant S, Gallagher PE, Averill DB (2002) Angiotensin peptides as neurotransmitters/neuromodulators in the dorsomedial medulla. Clin Exp Pharmacol Physiol 29:473–482

    PubMed  CAS  Google Scholar 

  • Diz DI, Kohara K, Ferrario C M (1992) Normalization of angiotensin (Ang) II receptors in the dorsal medulla oblongata of spontaneously hypertensive rats (SHR) follows converting enzyme inhibition and increases in plasma angiotensin-(1-7) concentrations. Am J Hypertens 5:16A

    Google Scholar 

  • Diz DI, Moriguchi A, Bosch SM, Ganten D, Ferrario CM (1994) Angiotensin receptor regulation in paraventricular nucleus (PVN) differs in SHR and transgenic (mREN2) 27 rats. Am J Hypertens 7(4):30A

    Google Scholar 

  • Diz DI, Pirro N (1992) Differential actions on angiotensin II and angiotensin-(1-7) on transmitter release. Hypertension 19:11-41–11-48

    Google Scholar 

  • Diz DI, Westwood B, Averill DB (2001) AT(1) antisense distinguishes receptors mediating angiotensin II actions in solitary tract nucleus. Hypertension 37:1292–1297

    PubMed  CAS  Google Scholar 

  • Diz DI, Westwood BM (2000) Deficiency of endogenous angiotensin-(1-7) in the nucleus tractus solitarii of (mREN2)27 transgenic rats may account for diminished barore-ceptor reflex function. Hypertension 36[4]:681

    Google Scholar 

  • Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Re R (1994) Tissue angiotensin system in cardiovascular medicine. Circulation 89:493–498

    PubMed  CAS  Google Scholar 

  • Erdos EG, Wagner B, Harbury CB, Painter RG, Skidgel RA, Fa XG (1989) Down-regulation and inactivation of neutral endopeptidase 24.11 (enkephalinase) in human neutrophils. J Biol Chem 264:14519–14523

    PubMed  CAS  Google Scholar 

  • Felix D, Khosla MC, Barnes KL, Imboden H, Montani B, Ferrario CM (1991) Neurophysi-ological responses to angiotensin-(1-7). Hypertension 17:1111–1114

    PubMed  CAS  Google Scholar 

  • Fernandes L, Fortes ZB, Nigro D Tostes RC, Santos RA, Carvalho MHC (2001) Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension 37:703–709

    PubMed  CAS  Google Scholar 

  • Ferrario CM (2002) Does angiotensin-(1-7) contribute to cardiac adaptation and preservation of endothelial function in heart failure? Circulation 105:1523–1525

    PubMed  Google Scholar 

  • Ferrario CM, Averill DB, Brosnihan KB, Chappell MC, Iskandar SS, Dean RH, Diz DI (2002a) Vasopeptidase inhibition and Ang-(1–7) in the spontaneously hypertensive rat. Kidney Int 62:1349–1357

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI (1997) Counterregulatory actions of angiotensin-(1-7). Hypertension 30:535–541

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, Dean RH, Fernandez A, Novikov S, Pinillas C, Luque M (1998) Characterization of angiotensin-(1-7) in the urine of normal and essential hypertensive subjects. Am J Hypertens 11:137–146

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Smith RD, Brosnihan KB, Chappell MC, Campese VM, Vesterqvist O, Liao W, Ruddy MC, Grim CE (2002b) Effects of omapatrilat on the renin angiotensin system in salt sensitive hypertension. Am J Hypertens 15:557–564

    PubMed  CAS  Google Scholar 

  • Ferreira AJ, Santos RA, Almeida AP (2001) Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668

    PubMed  CAS  Google Scholar 

  • Feterik K, Smith L, Katusic ZS (2001) Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery. Brain Res 873:75–82

    Google Scholar 

  • Fogarty DJ, Sanchez-Gomez MV, Matute C (2002) Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia 39:304–313

    PubMed  Google Scholar 

  • Fontes MA, Baltatu O, Caligiorne SM, Campagnole-Santos MJ, Ganten D, Bader M, Santos RA (2000) Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats. Physiol Genom 2:137–142

    CAS  Google Scholar 

  • Fontes MA, Pinge MC, Naves V, Campagnole-Santos MJ, Lopes OU, Khosla MC, Santos RA (1997) Cardiovascular effects produced by microinjection of angiotensins and angiotensin antagonists into the ventrolateral medulla of freely moving rats. Brain Res 750:305–310

    PubMed  CAS  Google Scholar 

  • Fontes MA, Silva LC, Campagnole-Santos MJ, Khosla MC, Guertzenstein PG, Santos RA (1994) Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res 665:175–180

    PubMed  CAS  Google Scholar 

  • Forster C, le Tran Y (1997) Angiotensin-(1-7) and the rat aorta: modulation by the endothelium. J Cardiovasc Pharmacol 30:676–682

    PubMed  Google Scholar 

  • Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA (1996) Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. Hypertension 28:104–108

    PubMed  CAS  Google Scholar 

  • Freeman EJ, Tallant EA (1994) Vascular smooth-muscle cells contain AT1 angiotensin receptors coupled to phospholipase D activation. Biochem J (Great Britain) 304:543–548

    CAS  Google Scholar 

  • Gafford JT, Skidgel RA, Erdos EG, Hersh LB (1983) Human kidney enkephalinase a neutral metalloendopeptidase that cleaves active peptides. Biochemistry 22:3265–3271

    PubMed  CAS  Google Scholar 

  • Garcia NH, Garvin JL (1994) Angiotensin 1–7 has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol 5:1133–1138

    PubMed  CAS  Google Scholar 

  • Gironacci MM, Adler-Graschinsky E, Pena C, Enero MA (1994) Effects of angiotensin II and angiotensin-(1-7) on the release of [3H] norepinephrine from rat atria. Hypertension 24:457–460

    PubMed  CAS  Google Scholar 

  • Gironacci MM, Fernandez-Tome MC, Speziale E, Sterin-Speziale N, Pena C (2002) Enhancement of phosphatidylcholine biosynthesis by angiotensin-(1-7) in the rat renal cortex. Biochem Pharmacol 63:507–514

    PubMed  CAS  Google Scholar 

  • Gironacci MM, Coba MP, Pena C (1999) Angiotensin-(1-7) binds at the type 1 angiotensin II receptors in rat renal cortex. Regul Pept 84:51–54

    PubMed  CAS  Google Scholar 

  • Gironacci MM, Vatta M, Rodriguez-Fermepin M, Fernandez BE, Pena C (2000) Angiotensin-(1-7) reduces norepinephrine release through a nitric oxide mechanism in rat hypothalamus. Hypertension 35:1248–1252

    PubMed  CAS  Google Scholar 

  • Gorelik G, Carbini LA, Scicli AG (1998) Angiotensin 1–7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Therap 286:403–410

    CAS  Google Scholar 

  • Graf K, Koehne P, Grafe M, Zhang M, Auch-Schwalk W, Fleck E (1995) Regulation and differential expression of neutral endopeptidase 24.11 in human endothelial cells. Hypertension 26:230–235

    CAS  Google Scholar 

  • Handa RK (1999) Angiotensin-(1-7) can interact with the rat proximal tubule AT(4) receptor system. Am J Physiol 277:F75–F83

    PubMed  CAS  Google Scholar 

  • Handa RK (2000a) Binding and signaling of angiotensin-(1-7) in bovine kidney epithelial cells involves the AT(4) receptor. Peptides 21:729–736

    PubMed  CAS  Google Scholar 

  • Handa RK (2000b) Metabolism alters the selectivity of angiotensin-(1-7) receptor ligands for angiotensin receptors. J Am Soc Nephrol 11:1377–1386

    PubMed  CAS  Google Scholar 

  • Handa RK, Ferrario CM, Strandhoy JW (1996) Renal actions of angiotensin-(1-7) in vivo and in vitro studies. Am J Physiol 270:F141–F147

    PubMed  CAS  Google Scholar 

  • Harder DR, Campbell WB, Roman RJ (1995) Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vas Res 32:79–92

    CAS  Google Scholar 

  • Heitsch H, Brovkovych S, Malinski T, Wiemer G (2001) Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension 37:72–76

    PubMed  CAS  Google Scholar 

  • Heller J, Kramer HJ, Maly J, Cervenka L, Horacek V (2000) Effect of intrarenal infusion of angiotensin-(1-7) in the dog. Kidney Blood Press Res 23:89–94

    PubMed  CAS  Google Scholar 

  • Heringer-Walther S, Batista EN, Walther T, Khosla MC, Santos RA, Campagnole-Santos MJ (2001) Baroreflex improvement in SHR after ACE inhibition involves angiotensin-(1-7). Hypertension 37:1309–1314

    PubMed  CAS  Google Scholar 

  • Heyne N, Beer W, Muhlbauer B, Osswald H (1995) Renal response to angiotensin (1–7) in anesthetized rats. Kidney Int 47:975–976

    Google Scholar 

  • Hilchey SD, Bell-Quilley CP (1995) Association between the natriuretic action of angiotensin-(1-7) and selective stimulation of renal prostaglandin I2 release. Hypertension 25:1238–1244

    PubMed  CAS  Google Scholar 

  • Ichikawa I, Harris RC (1991) Angiotensin actions in the kidney: Renewed insight into the old hormone. Kidney Int 40:583–596

    CAS  Google Scholar 

  • Iyer SN, Averill DB, Chappell MC, Yamada K, Jones AG, Ferrario CM (2000a) Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension 36:417–422

    PubMed  CAS  Google Scholar 

  • Iyer SN., Chappell MC, Averill DB, Diz DI, Ferrario CM (1998a) Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension 31:699–705

    PubMed  CAS  Google Scholar 

  • Iyer SN, Ferrario CM, Chappell MC (1998b) Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 31:356–361

    PubMed  CAS  Google Scholar 

  • Iyer SN, Yamada K, Diz DI, Ferrario CM, Chappell MC (2000b) Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system. J Cardiovasc Pharmacol 36:109–117

    PubMed  CAS  Google Scholar 

  • Jaiswal N Diz DI, Chappell MC, Khosla MC, Ferrario CM (1992) Stimulation of endothelial cell prostaglandin production by angiotensin peptides: Characteristics of receptors. Hypertension (Suppl II) 19:49–55

    Google Scholar 

  • Jaiswal N, Diz DI, Tallant EA, Khosla MC, Ferrario CM (1991a) Characterization of angiotensin receptors mediating prostaglandin synthesis in C6 glioma cells. Am J Physiol 260:R1000–R1006

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Jaiswal RK, Tallant EA, Diz DI, Ferrario CM (1993a) Alterations in prostaglandin production in spontaneously hypertensive rat smooth muscle cells. Hypertension 21:900–905

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Tallant EA, Diz DI, Khosla MC, Ferrario CM (1991b) Subtype 2 angiotensin receptors mediate prostaglandin synthesis in human astrocytes. Hypertension 17:1115–1120

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Tallant EA, Jaiswal RK, Diz DI, Ferrario CM (1993b) Differential regulation of prostaglandin synthesis by angiotensin peptides in porcine aortic smooth muscle cells: Subtypes of angiotensin receptors involved. J Pharmacol Exp Therap 265:664–673

    CAS  Google Scholar 

  • Kawabe H, Brosnihan KB, Diz DI, Ferrario CM (1986) Role of brain dopamine in centrally evoked angiotensin II responses in conscious rats. Hypertension (Suppl I) 8:I-84–1-89

    CAS  Google Scholar 

  • Kohara K, Brosnihan KB., Ferrario CM (1993) Angiotensin-(1-7) in the spontaneously hypertensive rat. Peptides 14:883–891

    PubMed  CAS  Google Scholar 

  • Kono T, Taniguchi A, Imura H, Oseko F, Khosla MC (1986) Biological activities of angiotensin II-(l–6)-hexapeptide and angiotensin II-(1–7)-heptapeptide in man. Life Sci 38:1515–1519

    PubMed  CAS  Google Scholar 

  • Krob HA, Vinsant SL, Ferrario CM, Friedman DP (1998) Angiotensin-(1-7) immunoreac-tivity in the hypothalamus of the (mRen-2d)27 transgenic rat. Brain Res 798:36–45

    PubMed  CAS  Google Scholar 

  • Kucharewicz I, Chabielska E, Pawlak D, Matys T, Rolkowski R, Buczko W (2000) The antithrombotic effect of angiotensin-(1-7) closely resembles that of losartan. J Renin-angiotensin-Aldosterone Syst 1:268–272

    PubMed  CAS  Google Scholar 

  • Lara LS, Bica RB, Sena SL, Correa JS, Marques-Fernandes MF, Lopes AG, Caruso-Neves C (2002) Angiotensin-(1-7) reverts the stimulatory effect of angiotensin II on the proximal tubule Na(+)-ATPase activity via a A779-sensitive receptor. Regul Pept 103:17–22

    PubMed  CAS  Google Scholar 

  • Lawrence AC, Clark IJ, Campbell DJ (1992) Increased angiotensin-(1-7) in hypophysial-portal plasma of conscious sheep. Neuroendocrinology 55:105–114

    PubMed  CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesar-tan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    PubMed  CAS  Google Scholar 

  • Li P, Chappell MC, Ferrario CM, Brosnihan KB (1997) Angiotensin-(1-7) augments bra-dykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29:394–400

    PubMed  CAS  Google Scholar 

  • Li YW, Guyenet PG (1995) Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am J Physiol 268:R272–R277

    PubMed  CAS  Google Scholar 

  • Li YW, Guyenet PG (1996) Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ Res 78:274–282

    PubMed  CAS  Google Scholar 

  • Lima DX, Campagnole-Santos MJ, Fontes MAP, Khosla MC, Santos RAS (1999) Haemorrhage increases the pressor effect of angiotensin-(1-7) but not of angiotensin II at the rat rostral ventrolateral medulla. J Hypertens 17:1152

    Google Scholar 

  • Lima DX, Fontes MA, Oliveira RC, Campagnole-Santos MJ, Khosla MC, Santos RA (1996) Pressor action of angiotensin I at the ventrolateral medulla: effect of selective angiotensin blockade. Immunopharmacology 33:305–307

    PubMed  CAS  Google Scholar 

  • Llorens-Cortes C, Huang H, Vicart P, Gasc JM, Paulin D, Corvol P (1992) Identification and characterization of neutral endopeptidase in endothelial cells from venous or arterial origins. J Biol Chem 267:14012–14018

    PubMed  CAS  Google Scholar 

  • Loot AE, Roks AJM, Henning RH, Tio RA, Suurmeijer AHH, Boomsma F, vanGilst WH (2002) Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550

    PubMed  CAS  Google Scholar 

  • Lopez O, Gironacci M, Rodriguez D, Pena C (1998) Effect of angiotensin-(1-7) on ATPase activities in several tissues. Regul Pept 77:135–139

    Google Scholar 

  • Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM (1996) Effects of Captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens 14:799–805

    PubMed  CAS  Google Scholar 

  • Machado RD, Ferreira MA, Belo AV, Santos RA, Andrade SP (2002) Vasodilator effect of angiotensin-(1-7) in mature and sponge-induced neovasculature. Regul Pept 107:105–113

    PubMed  CAS  Google Scholar 

  • Machado RD, Santos RA, Andrade SP (2000) Opposing actions of angiotensins on angio-genesis. Life Sci 66:67–76

    PubMed  CAS  Google Scholar 

  • Machado RD, Santos RA, Andrade SP (2001) Mechanisms of angiotensin-(1-7)-induced inhibition of angiogenesis. Am J Physiol Regul Integr Comp Physiol 280:R994–R1000

    PubMed  CAS  Google Scholar 

  • Mahon JM, Allen M, Herbert J, Fitzsimons JT (1995) The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1-7) or carbachol. Neurosci Lett 69:199–208

    CAS  Google Scholar 

  • Mahon JM, Carr RD, Nicol AK, Henderson IW (1994) Angiotensin-(1-7) is an antagonist at the type 1 angiotensin II receptor. J Hypertens 12:1377–1381

    PubMed  CAS  Google Scholar 

  • Massi M, Polidori G, Perfumi M, Gentili L, DeCaro G (1991a) Tachykinin receptor subtypes involved in the cental effects of tachykinins on water and salt intake. Brain Res 26:155–160

    CAS  Google Scholar 

  • Massi M, Saija A, Polidori C, Perfumi M, Gentili L, Costa G, De Caro G (1991b) The hypothalamic paraventricular nucleus is a site of action for the central effect of tachykinins on plasma vasopressin. Brain Res Bull 26:149–154

    PubMed  CAS  Google Scholar 

  • McGiff JC, Quilley CP, Carroll MA (1993) The contribution of cytochrome P450-depen-dent arachidonate metabolites to integrated renal function. Steroids 58:573–579

    PubMed  CAS  Google Scholar 

  • Meng W, Busija DW (1993) Comparative effects of angiotensin-(1-7) and angiotensin II on piglet pial arterioles. Stroke 24:2041–2045

    PubMed  CAS  Google Scholar 

  • Merrill DC, Karoly M, Chen K, Ferrario CM, Brosnihan KB (2002) Angiotensin-(1-7) in normal and preeclamptic pregnancy. Endocrine 18:239–245

    PubMed  CAS  Google Scholar 

  • Metzger R, Bader M, Ludwig T, Berberich C, Bunnemann B, Ganten D (1995) Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett 357:27–32

    PubMed  CAS  Google Scholar 

  • Min L, Sim MK, Xu XG (2000) Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomy-ocytes and aortic smooth muscle cells. Regul Pept 95:93–97

    PubMed  CAS  Google Scholar 

  • Minshall RD, Tan F, Nakamura F, Rabito SF, Becker RP, Marcic B, Erdos EG (1997) Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors: The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Circ Res 81:848–856

    PubMed  CAS  Google Scholar 

  • Monti J, Schinke M, Bohm M, Ganten D, Bader M, Bricca G (2001) Glial angiotensinogen regulates brain angiotensin II receptors in transgenic rats TGR (ASrAOGEN). Am J Physiol Regul Integr Comp Physiol 280:R233–R240

    PubMed  CAS  Google Scholar 

  • Moriguchi A, Ferrario CM., Brosnihan KB, Ganten D, Morris M (1994) Differential regulation of central vasopressin in transgenic rats harboring the mouse Ren-2 gene. Am J Physiol 267:R786–R791

    PubMed  CAS  Google Scholar 

  • Moriguchi A, Mikami H, Otsuka A, Katahira K, Kohara K, Ogihara T (1995a) Amino acids in the medulla oblongata contribute to baroreflex modulation by angiotensin II. Brain Res Bull 36:85–89

    PubMed  CAS  Google Scholar 

  • Moriguchi A, Tallant EA, Matsumura K, Reilly TM, Walton H, Ganten D, Ferrario CM (1995b) Opposing actions of angiotensin-(1-7) and angiotensin II in the brain of transgenic hypertensive rats. Hypertension 25:1260–1265

    PubMed  CAS  Google Scholar 

  • Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU (1998) Signal transduction mechanisms involved in angiotensin-(l–7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharm Exp Ther 284:388–398

    CAS  Google Scholar 

  • Nakamoto H, Ferrario CM, Fuller SB, Robaczwski DL, Winicov E, Dean RH (1995) Angiotensin-(1-7) and nitric oxide interaction in renovascular hypertension. Hypertension 25:796–802

    PubMed  CAS  Google Scholar 

  • Neuss M, Regitz-Zagrosek V, Hildebrandt A, Fleck E (1994) Human cardiac fibroblasts express an angiotensin receptor with unusual binding characteristics which is coupled to cellular proliferation. Biochem Biophys Res Commun 204:1334–1339

    PubMed  CAS  Google Scholar 

  • Neuss M, Regitz-Zagrosek V, Hildebrandt A, Fleck E (1996) Isolation and characterisation of human cardiac fibroblasts from explanted adult hearts. Cell Tissue Res 286:145–153

    PubMed  CAS  Google Scholar 

  • Neves LA, Santos RA, Khosla MC, Milsted A (2000) Angiotensin-(1-7) regulates the levels of angiotensin II receptor subtype AT1 mRNA differentially in a strain-specific fashion. Regul Pept 95:99–107

    PubMed  CAS  Google Scholar 

  • Nickenig G, Geisen G, Vetter H, Sachinidis A (1997) Characterization of angiotensin receptors on human skin fibroblasts. J Mol Med 75:217–222

    PubMed  CAS  Google Scholar 

  • Oliveira DR, Santos RAS, Santos GFP, Khosla MC, Campagnole-Santos MJ (1996) Changes in the baroreflex control of heart rate produced by central infusion of selective angiotensin antagonists in hypertensive rats. Hypertension 27:1284–1290

    PubMed  CAS  Google Scholar 

  • Oliveira MA, Fortes ZB, Santos RA, Kosla MC, De C (1999) Synergistic effect of angioten-sin-(l–7) on bradykinin arteriolar dilation in vivo. Peptides 20:1195–1201

    PubMed  CAS  Google Scholar 

  • Oliveira RC, Campagnole-Santos MJ, Santos RAS, DeMinas Gerais UF, Horizonte B, Brazil MG (1998) The pressor effect of angiotensin-(1-7) at the rostral ventrolateral medulla is multimediated. J Hypertens 16[Suppl 2]:S129

    Google Scholar 

  • Osei SY, Ahima RS, Minkes RK, Weaver JP, Khosla MC, Kadowitz PJ (1993) Differential responses to angiotensin-(1-7) in the feline mesenteric and hindquarters vascular beds. Eur J Pharmacol 234:35–42

    PubMed  CAS  Google Scholar 

  • Paula RD, Lima CV, Britto RR, Campagnole-Santos MJ, Khosla MC, Santos RAS (1999) Potentiation of the hypotensive effect of bradykinin by angiotensin-(172-7)-related peptides. Peptides 20:493–500

    PubMed  CAS  Google Scholar 

  • Paula RD, Lima CV, Khosla MC, Santos RAS (1995) Angiotensin-(1-7) potentiates the hypotensive effect of bradykinin in conscious rats. Hypertension 26:1154–1159

    PubMed  CAS  Google Scholar 

  • Pawlak R, Napiorkowska-Pawlak D, Takada Y, Urano T, Nagai N, Ihara H, Takada A (2001) The differential effect of angiotensin II and angiotensin 1–7 on norepinephrine, epinephrine, and dopamine concentrations in rat hypothalamus: the involvement of angiotensin receptors. Brain Res Bull 54:689–694

    PubMed  CAS  Google Scholar 

  • Perfumi M, Sajia A, Costa G, Massi M, Polidori C (1988) Vasopressin release induced by intracranial injection of eledoisin is mediated by central angiotensin II. Pharmacol Res Commun 20:811–826

    PubMed  CAS  Google Scholar 

  • Pirro NT, Ferrario CM, Chappell MC (2001) Neprilysin and endothelin converting enzyme contribute to the processing of Ang I and Ang-(l–9) to Ang-(l–7) in human endothelial cells. FASEB J 15[5]:A778

    Google Scholar 

  • Pitt B (2002) Clinical trials of angiotensin receptor blockers in heart failure: what do we know and what will we learn? Am J Hypertens 15:22S–27S

    PubMed  CAS  Google Scholar 

  • Porsti I, Bara AT, Busse R, Hecker M (1994) Release of nitric oxide by angiotensin-(1-7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol 111:652–654

    PubMed  CAS  Google Scholar 

  • Potts PD, Allen AM, Horiuchi J, Dampney RA (2000a) Does angiotensin II have a significant tonic action on cardiovascular neurons in the rostral and caudal VLM? Am J Physiol Regul Integr Comp Physiol 279:R1392–R1402

    PubMed  CAS  Google Scholar 

  • Potts PD, Horiuchi J, Coleman MJ, Dampney RA (2000b) The cardiovascular effects of angiotensin-(1-7) in the rostral and caudal ventrolateral medulla of the rabbit. Brain Res 877:58–64

    PubMed  CAS  Google Scholar 

  • Qadri F, Wolf A, Waldmann T, Rascher W, Unger T (1998) Sensitivity of hypothalamic paraventricular nucleus to C-and N-terminal angiotensin fragments—vasopressin release and drinking. J Neuroendocrinol 10:275–281

    PubMed  CAS  Google Scholar 

  • Qu L, McQueeney AJ, Barnes KL (1996) Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus. J Neurophysiol 75:2220–2228

    PubMed  CAS  Google Scholar 

  • Quan A, Baum M (1996) Endogenous production of angiotensin II modulates rat proximal tubule transport. J Clin Invest 97:2878–2882

    PubMed  CAS  Google Scholar 

  • Ren Y, Garvin JL, Carretero OA (2002) Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension 39:799–802

    PubMed  CAS  Google Scholar 

  • Rodgers K, Xiong S, Felix J, Roda N, Espinoza T, Maldonado S, Dizerega G (2001) Development of angiotensin (1–7) as an agent to accelerate dermal repair. Wound Repair Regen 9:238–247

    PubMed  CAS  Google Scholar 

  • Rodgers KE, Xiong S, DiZerega GS (2002) Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol 49:403–411

    PubMed  CAS  Google Scholar 

  • Roks AJ, van Geel PP, Pinto YM, Buikema H, Henning RH, De Zeeuw D, van Gilst WH (1999) Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension 34:296–301

    PubMed  CAS  Google Scholar 

  • Roman RJ, Alonso-Galicia M (1999) P450-Eicosanoids: A novel signaling pathway regulating renal function. News Physiol Sci 14:238–242

    PubMed  CAS  Google Scholar 

  • Rowe BP, Saylor DL, Speth RC, Absher DR (1995) Angiotensin-(1-7) binding at angiotensin II receptors in the rat brain. Regulatory Pept 56:139–146

    CAS  Google Scholar 

  • Ryan JW (1974) The fate of angiotensin II. In: Page IH, Bumpus FM (eds) Handbook of experimental pharmacology. Springer-Verlag, Berlin, pp 81–110

    Google Scholar 

  • Santos RA, Simoes e Silva AC, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walter S, Pinheiro VB, Lopes Mt, Bader M, Mendes EP, Lemos VS, Campagnole-San-tos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100(14):8258–8263

    PubMed  CAS  Google Scholar 

  • Santos RAS, Baracho NCV (1992) Angiotensin-(1-7) is a potent antidiuretic peptide in rats. Braz J Med Biol Res 25:651–654

    PubMed  CAS  Google Scholar 

  • Santos RAS, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM (1988) Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension (Suppl I) 11:153–157

    Google Scholar 

  • Santos RAS, Brum JM, Brosnihan KB, Ferrario CM (1990) Renin-angiotensin system during acute myocardial ischemia in dogs. Hypertension (Suppl I) 15:I-121–I-127

    CAS  Google Scholar 

  • Santos RAS, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1-7): an update. Regul Pept 91:45–62

    PubMed  CAS  Google Scholar 

  • Santos RAS, Campagnole-Santos MJ, Baracho NCV, Fontes MAP, Silva LCS, Neves LAA, Oliveira DR, Caligiorne SM, Rodrigues ARV, Gropen C Jr, Carvalho WS, Silva ACSE, Khosla MC (1994) Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res Bull 35:293–398

    PubMed  CAS  Google Scholar 

  • Santos RAS, Silva ACS, Magaldi AJ, Khosla MC, Ceasr KR, Passaglio KT, Baracho NCV (1996) Evidence for a physiological role of angiotensin-(1-7) in the control of hydro-electrolyte balance. Hypertension 27:875–884

    PubMed  CAS  Google Scholar 

  • Schappert SM (1996) National ambulatory medical care survey: 1994 summary. Advance Data, Vital Health Stat, Hyattsville, MD, National Center for Health Statistics, 273, PHS 96-1250:1–20

    Google Scholar 

  • Schiavone MT, Khosla MC, Ferrario CM (1990) Angiotensin-[1–7]: evidence for novel actions in the brain. J Cardiovasc Pharmacol 16(Suppl.4):S19–S24

    PubMed  CAS  Google Scholar 

  • Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA 85:4095–4098

    PubMed  CAS  Google Scholar 

  • Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M (1999) Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci USA 96:3975–3980

    PubMed  CAS  Google Scholar 

  • Senanayake PD, Moriguchi A, Kumagai H, Ganten D, Ferrario CM, Brosnihan KB (1994) Increased expression of angiotensin peptides in the brain of transgenic hypertensive rats. Peptides 15:919–926

    PubMed  CAS  Google Scholar 

  • Seyedi N, Xu X, Nasjletti A, Hintze TH (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170

    PubMed  CAS  Google Scholar 

  • Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Identification and characterization of procarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 277:17962–17969

    PubMed  CAS  Google Scholar 

  • Soleilhac JM, Lucas E, Beaumont A, Turcaud S, Michel JB, Ficheux D, Fournie-Zaluski MC, Roques BP (1992) A 94-kDa protein, identified as neurtal endopeptidase-24.11, can inactive atrial natriuretic peptide in the vascular endothelium. Mol Pharmacol 41:609–614

    PubMed  CAS  Google Scholar 

  • Stephenson SL, Kenny AJ (1987) Metabolism of neuropeptides. Biochem J (Great Britain) 241:237–247

    CAS  Google Scholar 

  • Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM (2000) Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation 101:1586–1593

    PubMed  CAS  Google Scholar 

  • Strawn WB, Ferrario CM, Tallant EA (1999) Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension 33:207–211

    PubMed  CAS  Google Scholar 

  • Tallant EA, Clark MA (2003) Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension 42:574–579

    PubMed  CAS  Google Scholar 

  • Tallant EA, Higson IT (1997) Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 19:333–342

    PubMed  CAS  Google Scholar 

  • Tallant EA, Diz DI, Ferrario CM (1999) Antiproliferative actions of angiotensin-(1-7) in vascular smooth muscle. Hypertension 34:950–957

    PubMed  CAS  Google Scholar 

  • Tallant EA, Diz DI, Khosla MC, Ferrario CM (1991a) Identification and regulation of angiotensin II receptor subtypes on NG108-15 cells. Hypertension 17:1135–1143

    PubMed  CAS  Google Scholar 

  • Tallant EA, Jaiswal N, Diz DI, Ferrario CM (1991b) Human astrocytes contain two distinct angiotensin receptor subtypes. Hypertension 18:32–39

    PubMed  CAS  Google Scholar 

  • Tallant EA, Landrum MH, Gallagher PE (2001) Attenuation of human breast and lung cancer cell growth by angiotensin-(1-7). FASEB J 15[5]:A778

    Google Scholar 

  • Tallant EA, Lu X, Weiss RB, Chappell MC, Ferrario CM (1997) Bovine aortic endothelial cells contain an angiotensin-(1-7) receptor. Hypertension 29:388–392

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Koehn JA, Gilligan JP, Charles D, Palmesino RA, Sharif R, McMartin C, Erion MD, Miller MJS (1989) Rat vascular tissue contains a neutral endopeptidase capable of degrading atrial natriuretic peptide. J Pharm Exp Ther 251:956–961

    CAS  Google Scholar 

  • Tharaux PL, Stefanski A, Ledoux S, Soleilhac JM, Ardaillou R, Dussaule JC (1997) EGF and TGF-β regulate neutral endopeptidase expression in renal vascular smooth muscle cells. Am J Physiol 272:C1836–C1843

    PubMed  CAS  Google Scholar 

  • Thibonnier M, Soto ME, Menard J, Aldegir JC (1981) Reduction of plasma and urinary vasopressin during treatment of severe hypertension by Captopril. Eur J Clin Invests II:449–453

    Google Scholar 

  • Tom B, deVries R, Saxena PR, Danser AH (2001) Bradykinin potentiation by angiotensin-(1-7) and ACE inhibitors correlates with ACE C-and N-domain blockade. Hypertension 38:95–99

    PubMed  CAS  Google Scholar 

  • Trachte GJ, Ferrario CM, Khosla MC (1990) Selective blockade of angiotensin responses in the rabbit isolated vas deferens by angiotensin receptor antagonists. J Pharmacol Exp Therap 255:929–934

    CAS  Google Scholar 

  • Ueda S, Masumori-Maemoto S, Wada A, Ishii M, Brosnihan KB, Umemura S (2001) Angiotensin-(1-7) potentiates bradykinin-induced vasodilatation in man. J Hypertens 19:2001–2009

    PubMed  CAS  Google Scholar 

  • Ueda S, Masumpori-Maemoto S, Ashino K, Nagahara T, Gotoh E, Umemura S, Ishii M (2000) Angiotensin-(1-7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man. Hypertension 35:998–1001

    PubMed  CAS  Google Scholar 

  • Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    PubMed  CAS  Google Scholar 

  • Valdes G, Germain AM, Corthorn J, Berrios C, Foradori AC, Ferrario CM, Brosnihan KB (2001) Urinary vasodilator and vasoconstrictor angiotensins during menstrual cycle, pregnancy, and lactation. Endocrine 16:117–122

    PubMed  CAS  Google Scholar 

  • Vallon V, Heyne N, Richter K, Khosla MC, Fechter K (1998) [7-D-ALA]-Angiotensin 1–7 blocks renal actions of angiotensin 1–7 in the anesthetized rat. J Cardiovasc Pharmacol 32:164–167

    PubMed  CAS  Google Scholar 

  • Vallon V, Richter K, Heyne N, Osswald H (1997) Effect of intratubular application of angiotensin 1–7 on nephron function. Kidney Blood Press Res 20:233–239

    PubMed  CAS  Google Scholar 

  • van Rodijnen WF, van Lambalgen TA, Tangelder GJ, van Dokkum RP, Provoost AP, ter Wee PM (2002) Reduced reactivity of renal microvessels to pressure and angiotensin II in fawn-hooded rats. Hypertension 39:111–115

    PubMed  Google Scholar 

  • Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    PubMed  CAS  Google Scholar 

  • Wei CC, Ferrario CM, Brosnihan KB, Farrell DM, Bradley WE, Jaffa AA, Dell’Italia LJ (2002) Angiotensin peptides modulate bradykinin levels in the interstitium of the dog heart in vivo. J Pharmacol Exp Ther 300:324–329

    PubMed  CAS  Google Scholar 

  • Weinstock M, Gorodetsky E (1995) Comparison of the effects of angiotensin II, losartan, and enalapril on baroreflex control of heart rate in conscious rabbits. J Cardiovasc Pharmacol 25:501–507

    PubMed  CAS  Google Scholar 

  • Welches WR, Brosnihan KB, Ferrario CM (1993) A comparison of the properties, and enzymatic activity of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci 52:1461–1480

    PubMed  CAS  Google Scholar 

  • Welches WR, Santos RAS, Chappell MC, Brosnihan KB, Greene LJ, Ferrario CM (1991) Evidence that prolyl endopeptidase participates in the processing of brain angiotensin. J Hypertens 9:631–638

    PubMed  CAS  Google Scholar 

  • Widdop RE, Krstew E, Jarrott B (1992) Electrophysiological responses of angiotensin peptides on the rat isolated nodose ganglion. Clin Exp Hypertens A, 14:597–613

    PubMed  CAS  Google Scholar 

  • Widdop RE, Sampey DB, Jarrott B (1999) Cardiovascular effects of angiotensin-(1-7) in conscious spontaneously hypertensive rats. Hypertension 34:964–968

    PubMed  CAS  Google Scholar 

  • Wilsdorf T, Gainer JV, Murphey LJ, Vaughan DE, Brown NJ (2001) Angiotensin-(1-7) does not affect vasodilator or TPA responses to bradykinin in human forearm. Hypertension 37:1136–1140

    PubMed  CAS  Google Scholar 

  • Wilson KM, Magargal W, Berecek KH (1988) Long-term Captopril treatment. Angiotensin II receptors and responses. Hypertension (Suppl I) 11:I-148–I-152

    CAS  Google Scholar 

  • Xiang J, Linz W, Becker H, Ganten D, Lang RE, Scholkens B, Unger T (1985) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113:215–223

    PubMed  CAS  Google Scholar 

  • Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines the plasma clearance of angiotensin-(1-7). Hypertension 98:496–502

    Google Scholar 

  • Yamada K, Moriguchi A, Mikami H, Okuda N, Higaki J, Ogihara T (1995) The effect of central amino acid neurotransmitters on the antihypertensive response to angiotensin blockade in spontaneous hypertension 4226. J Hypertens 13:1624–1630

    PubMed  CAS  Google Scholar 

  • Yoshida M, Naito Y, Urano T, Takada A, Takada Y (2002) L-158,809 and (D-Ala(7))-angio-tensin I/II (1–7) decrease PAI-1 release from human umbilical vein endothelial cells. Thromb Res 105:531–536

    PubMed  CAS  Google Scholar 

  • Zeng W, Hong MA, Wang L, et al (2001) The role of angiotensin-(1-7) in the proliferative response of vascular smooth muscle cells induced by endothelin-1. Chin J Geriatr Cardiovasc Cerebrovasc Dis 3:107–109

    Google Scholar 

  • Zeng W, Ma H, Lu W, et al (2000) The role of angiotensin-(1-7) in myocardial cell hypertrophy induced by angiotensin II. Chin J Cardiol 28:460–463

    Google Scholar 

  • Zhu DN, Moriguchi A, Mikami H, Higaki I, Ogihara T (1998) Central amino acids mediate cardiovascular response to angiotensin II in the rat. Brain Res Bull 45:189–197

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrario, C.M. et al. (2004). Angiotensin-(1–7). Its Contribution to Arterial Pressure Control Mechanisms. In: Unger, T., Schölkens, B.A. (eds) Angiotensin Vol. I. Handbook of Experimental Pharmacology, vol 163 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18495-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18495-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40640-2

  • Online ISBN: 978-3-642-18495-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics