Skip to main content

On the Stabilization of Systems with Bounded and Delayed Input

  • Conference paper
Advances in Time-Delay Systems

Abstract

The problem of globally asymptotically stabilizing by bounded feedback an oscillator with an arbitrary large delay in the input is solved. A first solution follows from a general result on the global stabilization of null controllable linear systems with delay in the input by bounded control laws with a distributed term. Next, it is shown through a Lyapunoy analysis that the stabilization can be achieved as well when neglecting the distributed tenns. It turns out that this main result is intimately related to the output feedback stabilization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah C., Dorato P., Benitez-Read and Byrne R.: Delayed positive feedback can stabilize oscillatory systems. Proc. American Contr. Conf. (1993) 3106–31

    Google Scholar 

  2. Ansoff H.I.: Stability of linear oscillating systems wilh constant time lag. J. Appl. Mech. 16 (1949) 158–164

    MathSciNet  MATH  Google Scholar 

  3. Ansoff H.I. and Krumhansl J. A.: atA general stability criterion for linear oscillating systems with constant time lag. Quart. Appl. Math. 6 (1948) 337–341.

    MathSciNet  MATH  Google Scholar 

  4. Anstein S., Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Contr., Vol. AC-27 No.4, 869–879, 1982.

    Google Scholar 

  5. Hale J.K. and Verduyn Lunel S.M., atIntroduction to Functional Differential Equations. Applied Math, Sciences, 99, Springer-Verlag New-York, 1993.

    Google Scholar 

  6. Manitius A.Z. and Olbrot A.W., Finite Spectrum Assignment problem for Systems with Delays. IEEE Trans. Autom. Contr., Vol. AC-24No. 4, 541–553, 1979.

    Article  MathSciNet  Google Scholar 

  7. Mazene F. and Praly L., Adding Gn Integration and Global Asymptotic Stabilization of Feedforward Systems, IEEE Trans. Aut. Contr., Vol. 41.no. 11, pp. 1559–1578, 1996.

    Article  Google Scholar 

  8. Mazene F., Mondié S. and Niculescu S., global asymptotic stabilization for chains of integrators wilh a delay in the input. Proc. 40th IEEE Conf. Dec. Contr., Orlando, Florida, 2001, and submitted 10 IEEE Trans. Autom. Contr., 2001.

    Google Scholar 

  9. Minorsky N.: Self-excited oscillations in dynamical systems possessing retarded actions. J. Applied Mech. 9 (1942) A65–A71.

    Google Scholar 

  10. Mondié S., Dambrin M. and Santos O., Approximation of control laws wilh distributed delays: a necessary cOlldition for stability. IFAC Symposium on Systems, Structure and Control, Prague, Czek Republic, August 2001.

    Google Scholar 

  11. Mondié S., Lozano R. and Collado, J., Resetting Process-Model Control for unstable systems with delay. Submitted to IEEE Trans. Autom. Contr., 2001.

    Google Scholar 

  12. Mufti I.H.: A note on the stability of an equation of third order with time lag. IEEE Trans. Automat. Contr. AC-9 (1964) 190–

    Article  Google Scholar 

  13. Neimark J. (1949). D-subdivisions and spaces of quasipolynomials. Prickl. Math. Mech., 13, 349–380.

    MathSciNet  Google Scholar 

  14. Nieulescu S.-I.: Delay effects Oil stability. A robust control approach. Springer-Verlag Heidelberg, LNCIS, May 2001.

    Google Scholar 

  15. Niculescu S.-I. and Abdallah C.T.: Delay effects on stalic OutPut feedback stabilization. Proc. 39th IEEE Conf. Dec. Contr., Sydney, Australia (December 2000).

    Google Scholar 

  16. Palmor Z.J., Time delay Compensation-Smith predictor and its modifications, in The Control Handbook, (W.S. Levine, Eds). CRSC Press, 224–237, 1996.

    Google Scholar 

  17. Smith O.J.M., Closer Control of loops wilh dead time, Chem. Eng. Prog., 53, 217–219, 1959.

    Google Scholar 

  18. Sussmann H.J., Sontag E.D. and Yang Y., A general result all the stabilizarioll of linear systems using bOunded controls. IEEE Trans. Autom. Contr., Vol. AC-39, 2411–2425, 1994.

    Article  MathSciNet  Google Scholar 

  19. Teel A., Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems and Control Letters, 18, 165–171, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  20. Watanabe K. and Ito M., A process model comrol for linear systems with delay. IEEE Trans. Autom. Contr., Vol. AC-26 No. 6, 1261–1268, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazenc, F., Mondié, S., Niculescu, SI. (2004). On the Stabilization of Systems with Bounded and Delayed Input. In: Niculescu, SI., Gu, K. (eds) Advances in Time-Delay Systems. Lecture Notes in Computational Science and Engineering, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18482-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18482-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20890-7

  • Online ISBN: 978-3-642-18482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics