Skip to main content

Robust Prediction-Dased Control for Unstable Delay Systems

  • Conference paper
Advances in Time-Delay Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 38))

Abstract

We present a discrete-time prediction based state-feedback controller. It is shown that this controller stabilizes possibly unstable continuous-time delay systems. The stability is shown to be robust with respect uncertainties in the knowledge on the plant parameters, the system delay and the sampling period. The proposed prediction based controller has been tested in a real-time application to control the yaw angular displacement of a 4-rotor mini-helicopter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrom KJ. and B. Wittenmark (1997). Computer-Controlled Systems-Theory and Design, Pretince-Hall, third edition.

    Google Scholar 

  2. Aldea M. and Gonzalez M. “MaRTE OS: An Ada Kernel for Real-Time Embedded Applications”. Proceedings of the International Conference on Realiable Software Technologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS 2043, May 2001.

    Google Scholar 

  3. Brethé D. and Loiseau U. (1998). An effective algorithm for finite spectrum assignment of single-input systems with delays, Mathematics in computers and simulation. 45, 339–348.

    Article  MATH  Google Scholar 

  4. Kamen E.W, Khargonekar P.P. and A. Tannenbaum (1986). Proper stable bezout factorizations and feedback control of linear time delay systems, Int. J. Contr., Vol. 43No.3, 837–857.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Lozano, B. Brogliato, O. Egeland, B. Maschke. Passivity-based control system analysis and design. Springer-Verlag. Communications and Control Engineering Series, 2000. ISBN 1-85233-285-9.

    Google Scholar 

  6. Manitius, A. Z. and A.W Olbrot (1979). Finite Spectrum Assignment problem for Systems with Delays, IEEE Trans. Autom. Contr., Vol. AC-24No.4, 541–553.

    Article  MathSciNet  Google Scholar 

  7. Mondié S., Dambrine M., Santos O. (200la). Approximation of control laws with distributed delays: a necessary condition for stability. IFAC Conference on Systems. Structure and Control Prague, Czek Republic.

    Google Scholar 

  8. Mondié S., Lozano, R. and Collado J. (2001b). Reselling Process-Model Control for unstable systems with delay, 40th IEEE Conference on Decision and Control, Orlando, Florida.

    Google Scholar 

  9. Mondié S., Garda P., Lozano R. (2002). Resetting Smith Predictor for the Control of Unstable Systems with Delay, IFAC 15th Triennial World Congress, Barcelona. Spain, 2002.

    Google Scholar 

  10. Niculescu S. (2001). Delay effects on stability: a robust control approach. SpringerVerlag Heidelberg, Germany.

    MATH  Google Scholar 

  11. S. Niculcecu, R. Lozano. On the passivity of linear delay systems. tiIEEE Transactiolls on Automatic Control, pp460–464, April 2001

    Google Scholar 

  12. Morse A.S., Ring Models for Delay-Differential Systems. Automatica, Vol. 12, 529–531, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  13. Palmor Z.J. (1996). Time delay Compensation-Smith predictor and its modifications, in The Control Handbook, (W.S. Levine, Eds), CRSC Press, 224–237, 1996

    Google Scholar 

  14. POSIX. 13 (1998) IEEE Std. 1003.13-1998. Information Technology-Standardized Application Enviroment Profile-POSIX Realtime Application Support (AEP). The Institute of Electrical and Electronics Engineers.

    Google Scholar 

  15. Smith O.J.M. (1959). Closer Control of loops with dead time, Chem. Eng. Prog., 53, 217–219.

    Google Scholar 

  16. Watanabe K., Ito, M. (1981). A process model control for linear systems with delay, IEEE Trans. Autom. Contr., Vol. AC-26No. 6, 1261–1268.

    Google Scholar 

  17. Fastrack 3Space Polhemus, User’s Manual, Colchester, Vermont, USA.

    Google Scholar 

  18. C. Foias, H. Ozbay, A. Tannenbaum. Robust Control of Infinite Dimensional Systems: Frecuency Domain Methods, Lecture Notes in Control and Information Sciences, No. 209. Springer-Verlag, London, 1996, ISBN 3-540-19994-2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lozano, R., Gil, P.G., Castillo, P., Dzul, A. (2004). Robust Prediction-Dased Control for Unstable Delay Systems. In: Niculescu, SI., Gu, K. (eds) Advances in Time-Delay Systems. Lecture Notes in Computational Science and Engineering, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18482-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18482-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20890-7

  • Online ISBN: 978-3-642-18482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics