Skip to main content

Prediction of Minimum Free Energy Structure for Simple Non-standard Pseudoknot

  • Conference paper
  • 1011 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 127))

Abstract

Predicting the secondary structure with minimum free energy of an RNA molecule is an important problem in computational biology. Unfortunately, the problem is in general NP-hard if there are pseudoknots in the structure. Existing algorithms usually target at some restricted classes of pseudoknots. In this paper, we extend the current classification of pseudoknots to capture more complicated pseudoknots, namely the simple non-standard pseudoknots of degree k. We provide an algorithm to compute the structure with minimum free energy for this type of pseudoknots of degree 4 which covers all known secondary structures of RNAs in this class. Our algorithm runs in O(m 4) time where m is the length of the input RNA sequence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T.: Dynamic programming algorithms for rna secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, H., Condon, A., Jabbari, H.: An o(n 5) algorithm for mfe prediction of kissing hairpins and 4- chains in nucleic acids. Journal of Computational Biology 16(6), 803–815 (2009)

    Article  MathSciNet  Google Scholar 

  3. Deogun, J., Donis, R., Komina, O., Ma, F.: Rna secondary structure prediction with simple pseudoknots. In: Proceedings of the second conference on Asia- Pacific Bioinformatics Conference (APBC 2004), pp. 239–246 (2004)

    Google Scholar 

  4. Dirks, R., Pierce, N.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Comput. Chem. 24(13), 1664–1677 (2003)

    Article  Google Scholar 

  5. Frank, D., Pace, N.: Ribonuclease p: unity and diversity in a trna processing ribozyme. Annu. Rev. Biochem. 67, 153–180 (1998)

    Article  Google Scholar 

  6. Gluick, T., Draper, D.: Thermodynamics of folding a pseudoknotted mrna fragment. Journal of Molecular Biology 241, 246–262 (1994)

    Article  Google Scholar 

  7. Lyngso, R., Pedersen, C.: A dynamic programming algorithm for rna structure prediction including pseudoknots. In: Proc. of the Fourth Annual International Conferences on Compututational Molecular Biology (RECOMB 2000). ACM Press, New York (2000)

    Google Scholar 

  8. Nguyen, V., Kiss, T., Michels, A., Bensaude, O.: 7sk small nuclear rna binds to and inhibits the activity of cdk9/cyclin t complexes. Nature 414, 322–325 (2001)

    Article  Google Scholar 

  9. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  Google Scholar 

  10. Rivas, E., Eddy, S.: A dynamic programming algorithm for rna structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  11. Roland, E.: Pseudoknots in rna secondary structures: representation, enumeration, and prevalence. Journal of Computational Biology 13(6), 1197–1213 (2006)

    Article  MathSciNet  Google Scholar 

  12. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for rna structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, Z., Zhu, Q., Luo, K., Zhou, Q.: The 7sk small nuclear rna inhibits the cdk9/cyclin t1 kinase to control transcription. Nature 414, 317–322 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, T.K.F., Yiu, S.M. (2011). Prediction of Minimum Free Energy Structure for Simple Non-standard Pseudoknot. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2010. Communications in Computer and Information Science, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18472-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18472-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18471-0

  • Online ISBN: 978-3-642-18472-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics