Skip to main content

Monolithic Single-Photon Avalanche Diodes: SPADs

  • Chapter
  • First Online:
Single-Photon Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 160))

  • 3277 Accesses

Abstract

The art of creating monolithic single-photon photodetectors is a mix of design skills and device physics knowledge, and it requires an understanding of the mechanisms underlying single-photon detection in highly complex integrated systems. This chapter begins with the fundamentals of avalanching, the basics for integration of avalanche photodiodes operating in Geiger-mode, and the issues associated with large arrays. We outline the techniques that made it possible to integrate single-photon detectors in standard CMOS processes, and to design compact ancillary electronics for operating and reading pixels based on these devices. Finally, we present a description of several readout architectures designed for massive arrays of single-photon detectors. A discussion of future trends in the context of the most advanced applications in various fields of research concludes this chapter. The art of creating monolithic single-photon photodetectors is a mix of design skills and device physics knowledge, and it requires an understanding of the mechanisms underlying single-photon detection in highly complex integrated systems. This chapter begins with the fundamentals of avalanching, the basics for integration of avalanche photodiodes operating in Geiger-mode, and the issues associated with large arrays. We outline the techniques that made it possible to integrate single-photon detectors in standard CMOS processes, and to design compact ancillary electronics for operating and reading pixels based on these devices. Finally, we present a description of several readout architectures designed for massive arrays of single-photon detectors. A discussion of future trends in the context of the most advanced applications in various fields of research concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A TDC is a sort of chronometer capable of discerning pulse position with high precision.

References

  1. A. Rochas, Single-Photon Avalanche Diodes in CMOS Technology, Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2003

    Google Scholar 

  2. S. Cova, A. Longoni, A. Andreoni, Towards picosecond resolution with single-photon avalanche diodes, Rev. Sci. Instr. 52(3), 408–412 (1981)

    Article  ADS  Google Scholar 

  3. R.J. McIntyre, Recent developments in silicon avalanche photodiodes, Measurement 3(4), 146–152 (1985)

    Article  ADS  Google Scholar 

  4. A. Spinelli, A.L. Lacaita, Physics and numerical simulation of single photon avalanche diodes, IEEE Trans. Electron Devices 44(11), 1931–1943 (1997)

    Article  ADS  Google Scholar 

  5. A. Rochas et al., Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology, Rev. Sci. Instr. 74(7), 3263–3270 (2003)

    Article  ADS  Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices. 2nd edn. Wiley-Interscience (1981).

    Google Scholar 

  7. C.A. Lee, R.A. Logan, R.L. Batdorf, J.J. Kleimack, W. Wiegmann, Ionization rates of holes and electrons in silicon. Phys. Rev. 134, A761–A773 (1964)

    Article  ADS  Google Scholar 

  8. A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, S. Cova, 35 ps Time resolution at room temperature with large area single photon avalanche diodes, Electron. Lett. 41(5), 272–274 (2005)

    Article  ADS  Google Scholar 

  9. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection, Appl. Opt. 35(12), 1956–1976 (1996)

    Article  ADS  Google Scholar 

  10. A. Lacaita, S. Cova, A. Spinelli, F. Zappa, Photon-assisted avalanche spreading in reach-through photodiodes, Appl. Phys. Lett. 62(6), 606–608 (1993)

    Article  ADS  Google Scholar 

  11. A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, Observation of avalanche propagation by multiplication assisted diffusion in p-n junctions, Appl. Phys. Lett. 57(5), 489–491 (1990)

    Article  ADS  Google Scholar 

  12. G. Kirchner, F. Koidl, Compensation of SPAD time-walk effects, J. Opt. A Pure Appl. Opt. 1(2), 163 (1999)

    Article  ADS  Google Scholar 

  13. J. Blazej, I. Prochazka, Avalanche photodiode output pulse rise-time study, SPIE Photon Counting Appl. Quantum Opt. Quantum Inf. Transf. Process. II 7355(1), 73550M (2009)

    Google Scholar 

  14. G. Ripamonti, S. Cova, M. Ghioni, M. Mastrapasqua, S. Vanoli, (PS)2: a new semiconductor device for positron-sensitive picosecond detection of single optical photons, Nucl. Instrum. Methods Phys. Res. A 310(1–2), 184–188 (1991)

    Article  ADS  Google Scholar 

  15. R.K. Henderson, E.A.G. Webster, R. Walker, J.A. Richardson, L.A. Grant, A 3 ×3, 5 μm pitch, 3-transistor single photon avalanche diode array with integrated 11 V bias generation in 90 nm CMOS technology. Electron Devices Meeting (IEDM), 2010 IEEE International, 14.2.1–14.2.4 (2010)

    Google Scholar 

  16. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, E. Charbon, A low-noise single-photon detector implemented in a 130 nm CMOS imaging process, Solid-State Electron. 53(7), 803–808 (2009)

    Article  ADS  Google Scholar 

  17. C. Niclass, A. Rochas, P.A. Besse, E. Charbon, Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes, IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005)

    Article  ADS  Google Scholar 

  18. G. Ripamonti, S. Cova, Carrier diffusion effects in the time-response of a fast photodiode, Solid-state Electron. 28(9), 925–931 (1985)

    Article  ADS  Google Scholar 

  19. S. Tisa, F. Zappa, I. Labanca, On-chip detection and counting of single-photons, in IEEE International Electron Device Meeting (2005), pp. 815–818

    Google Scholar 

  20. C. Niclass, M. Sergio, E. Charbon, A single photon avalanche diode array fabricated in deep-submicron CMOS technology, IEEE Des. Autom. Test Eur. 1–6 (2006)

    Google Scholar 

  21. L. Carrara, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, A gamma, X-ray and high energy proton radiation-tolerant CMOS image sensor for space applications, IEEE Int. Solid-State Circuits Conference (2009), pp. 40–41

    Google Scholar 

  22. S. Cova, A. Lacaita, G. Ripamonti, Trapping phenomena in avalanche photodiodes on nanosecond scale, Electron Device Lett. 12(12), 685–687 (1991)

    Article  ADS  Google Scholar 

  23. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007)

    Article  ADS  Google Scholar 

  24. I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, S. Cova, Operation of silicon single photon avalanche diodes at cryogenic temperature, Rev. Sci. Instrum. 78(6), 063105 (2007)

    Article  ADS  Google Scholar 

  25. W. Oldham, R. Samuelson, P. Antognetti, Triggering phenomena in avalanche diodes, Electron Devices. IEEE Trans. 19(9) 1056–1060, Sep. 1

    Google Scholar 

  26. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kaplin, A. Karakash, S. Klemin, R. Mirzoyan, A. Otte, E. Popova, V. Sosnovtsev, M. Teshima, Large area silicon photomultipliers: performance and applications, Nucl. Instrum. Methods Phys. Res. A 567(1), 78 – 82 (2006)

    Article  ADS  Google Scholar 

  27. H. Miyamoto, M. Teshima, B. Dolgosheim, R. Mirzoyan, J. Nincovic, H. Krawczynski, SiPM development and application for astroparticle physics experiments, in 31st International Cosmic Ray Conference, 2009

    Google Scholar 

  28. W. Grant, Electron and hole ionization rates in epitaxial silicon at high electric fields, Solid-State Electron. 16(10), 1189–1203 (1973)

    Article  ADS  Google Scholar 

  29. H. Finkelstein, M. Hsu, S. Esener, Dual-junction single-photon avalanche diode, Electron. Lett. 43(22), (2007)

    Google Scholar 

  30. E. Charbon, C. Niclass, Controlling spectral response of photodetector for an image sensor, US Patent 7,683,308 B2, 23 Mar 2010

    Google Scholar 

  31. F. Zappa et al., Integrated array of avalanche photodiodes for single-photon counting, IEEE ESSDERC 600–603, (1997)

    Google Scholar 

  32. W.J. Kindt, Geiger Mode Avalanche Photodiode Arrays for Spatially Resolved Single Photon Counting, Ph.D. thesis, Delft University Press, ISBN 90–407–1845–8, 1999

    Google Scholar 

  33. B. Aull et al., Geiger-mode avalanche photodiodes for three-dimensional imaging, Lincoln Lab. J. 13(2), 335–50 (2002)

    Google Scholar 

  34. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-photon synchronous detection, IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009)

    Article  ADS  Google Scholar 

  35. H. Finkelstein, M.J. Hsu, S.C. Esener STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology, IEEE Electron Device Lett. 27, 887 (2006)

    Google Scholar 

  36. C. Niclass, M. Sergio, E. Charbon, A single photon avalanche diode array fabricated in 0. 35 μm CMOS and based on an event-driven readout for TCSPC experiments, in SPIE Optics East, Boston, 2006

    Google Scholar 

  37. C. Niclass, M. Gersbach, R.K. Henderson, L. Grant, E. Charbon, A single photon avalanche diode implemented in 130 nm CMOS technology, IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007)

    Article  ADS  Google Scholar 

  38. D. Stoppa, L. Pacheri, M. Scandiuzzo, L. Gonzo, G.-F. Della Betta, A. Simoni, A CMOS 3-D imager based on single photon avalanche diode, IEEE Trans. Circuits Syst. 54(1), 4–12 (2007)

    Article  Google Scholar 

  39. L. Pancheri, D. Stoppa, Low-noise CMOS single-photon avalanche diodes with 32 ns dead time, in IEEE European Solid-State Device Conference, 2007

    Google Scholar 

  40. N. Faramarzpour, M.J. Deen, S. Shirani, Q. Fang, Fully integrated single photon avalanche diode detector in standard CMOS 0.18-um technology, IEEE Trans. Electron Devices 55(3), 760–767 (2008)

    Article  ADS  Google Scholar 

  41. C. Niclass, M. Sergio, E. Charbon, A CMOS 64 ×48 single photon avalanche diode array with event-driven readout, in IEEE European Solid-State Circuit Conference, 2006

    Google Scholar 

  42. J. Richardson, L. Grant, R. Henderson, A low-dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology, in International Image Sensor Workshop, 2009

    Google Scholar 

  43. M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R.K. Henderson, F. Borghetti, D. Stoppa, E. Charbon, A parallel 32 ×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology, in IEEE European Solid-State Device Conference, 2009

    Google Scholar 

  44. M. Gersbach, D.L. Boiko, C. Niclass, C. Petersen, E. Charbon, Fast fluorescence dynamics in nonratiometric calcium indicators, Opt. Lett. 34(3), 362–364 (2009)

    Article  ADS  Google Scholar 

  45. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128 ×128 single-photon image sensor with column-level 10-bit time-to-digital converter array, IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)

    Article  ADS  Google Scholar 

  46. M. Sergio, C. Niclass, E. Charbon, A 128 ×2 CMOS single photon streak camera with timing-preserving latchless pipeline readout, in IEEE Intl. Solid-State Circuits Conference (2007), pp. 120–121

    Google Scholar 

  47. A. Rochas, M. Gösch, A. Serov, R.S. Popovic, T. Lasser, R. Rigler, First fully integrated 2-D array of single-photon detectors in standard CMOS technology, IEEE Photon. Technol. Lett. 15(7) (2003)

    Google Scholar 

  48. M. Karami, M. Gersbach, E. Charbon, A new single-photon avalanche diode in 90 nm standard CMOS technology, in SPIE Optics+Photonics, NanoScience Engineering, Single-Photon Imaging, 2010

    Google Scholar 

  49. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R.K. Henderson, A 32 ×32 50ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in IEEE Custom Integrated Circuits Conference, 2009

    Google Scholar 

  50. D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R.K. Henderson, M. Gersbach, E. Charbon, A 32 ×32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, in IEEE European Solid-State Device Conference, 2009

    Google Scholar 

  51. M. Gersbach, R. Trimananda, Y. Maruyama, M. Fishburn, D. Stoppa, J. Richardson, R.K. Henderson, E. Charbon, High frame-rate TCSPC-FLIM readout system using a SPAD-based image sensor, in SPIE Optics+Photonics, NanoScience Engineering, Single-Photon Imaging, 2010

    Google Scholar 

  52. C. Veerappan, J. Richardson, R. Walker, D.U. Li, M.W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, A 160 ×128 Single-Photon Image Sensor with on-Pixel 55ps 10bit Time-to-Digital Converter, IEEE Intl. Solid-State Circuits Conference (ISSCC), Feb. 2011

    Google Scholar 

  53. R. Hull, Properties of Crystalline Silicon. The Institution of Engineering and Technology (1999)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to current and former graduate students and postdoctoral fellows of the AQUA group and the MEGAFRAME project that made this research possible. Special thanks go to Lucio Carrara, Marek Gersbach, Cristiano Niclass, and Maximilian Sergio who were responsible for the designs outlined here, as well as Fausto Borghetti, Claudio Favi, Robert Henderson, Mohammad Karami, Theo Kluter, Estelle Labonne, Yuki Maruyama, Justin Richardson, David Stoppa, and Richard Walker who codesigned the chips. The authors acknowledge Giordano Beretta, Claudio Bruschini, Dmitri Boiko, Neil Gunther, Lindsay Grant, David Li, and Luciano Sbaiz for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Charbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charbon, E., Fishburn, M.W. (2011). Monolithic Single-Photon Avalanche Diodes: SPADs. In: Seitz, P., Theuwissen, A. (eds) Single-Photon Imaging. Springer Series in Optical Sciences, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18443-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18443-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18442-0

  • Online ISBN: 978-3-642-18443-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics