Skip to main content

Single-Photon Detectors for Time-of-Flight Range Imaging

  • Chapter
  • First Online:
Single-Photon Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 160))

  • 3153 Accesses

Abstract

We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More detailed and broader overviews over optical ranging principles can be found in the references [1, 2, 3, 4, 5].

  2. 2.

    Prof. S. Cova, Prof. F. Zappa (Politecnico di Milano), Prof. E. Charbon (TUDELFT, EPFL), Dr. R. K. Henderson (The University of Edinburgh).

References

  1. R. Schwarte, Principles of 3-D imaging technology, in Handbook of Computer Vision and Applications, ed. by B. Jähne, H. Haussecker, P. Geißler (Academic Press, New York, 1999)

    Google Scholar 

  2. B. Jähne, H. Haussecker, P. Geißler, Handbook of Computer Vision and Applications, vol. 1 (Academic Press, New York, 1999), pp. 479–482

    MATH  Google Scholar 

  3. P. Besl, Active optical range imaging sensors. Machine Vision Appl. 1, 127–152 (1988)

    Article  Google Scholar 

  4. M.-C. Amann, T.B.M. Lescure, R. Myllyla, M. Rioux, Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40, 10–19 (2001)

    Article  ADS  Google Scholar 

  5. F. Blais, Review of 20 years of range sensor development. J. Elect. Imaging 13(1), 231–243 (2004)

    Article  ADS  Google Scholar 

  6. B. Hosticka, P. Seitz, A. Simoni, Optical time-of-flight sensors for solid-state 3D-vision. Encyclop. Sensors 7, 259–289 (2006)

    Google Scholar 

  7. R. Dändliker, R. Thalmann, D. Prongué, Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 13, 339–341 (1988)

    Article  ADS  Google Scholar 

  8. R. Dändliker, Y. Salvadé, E. Zimmermann, Distance measurement by multiple-wavelength interferometry. J. Opt. 29(3), 105–114 (1998)

    Article  ADS  Google Scholar 

  9. Leica-geosystem website: www.leica-geosystems.com

  10. Konicaminolta website:www.konicaminolta.com

  11. J. Kramer, P. Seitz, H. Baltes, An inexpensive real-time 3-D camera with a smart optical sensor. Sensors Actuators A31, 241–244 (1992)

    Article  Google Scholar 

  12. Y. Oike, M. Ikeda, K. Asada, Design and implementation of real-time 3-D image sensor with 640 ×480 pixel resolution. IEEE J. Solid-State Circuits 39(4), 622–628 (2004)

    Article  ADS  Google Scholar 

  13. Y. Oike, M. Ikeda, K. Asada, A 375 ×365 high-speed 3-D range-finding image sensor using row-parallel search architecture and multisampling technique. IEEE J. Solid-State Circuits 40(2), 444–453 (2005)

    Article  ADS  Google Scholar 

  14. Riegl website: www.riegl.com

  15. Optech website: www.optech.ca

  16. Mesa Imaging website: www.mesa-imaging.ch

    Google Scholar 

  17. PMD Technologies website:www.pmdtec.com

  18. Optrima NV website: www.optrima.com

    Google Scholar 

  19. O. Elkhalili, O.M. Schrey, P. Mengel, M. Petermann, W. Brockherde, B.J. Hosticka, A 4 ×64 pixel CMOS image sensor for 3-D measurements applications. IEEE J. Solid-State Circuits 39(7), 1208–1212 (2004)

    Article  ADS  Google Scholar 

  20. G. Zach, M. Davidovic, H. Zimmermann, Extraneous-light resistant multipixel range sensor based on a low-power correlating pixel-circuit, in Proceedings of the 35th IEEE European Solid-State Circuits Conference ESSCIRC09, September 2009, pp. 236–239

    Google Scholar 

  21. D. Stoppa, L. Viarani, A. Simoni, L. Gonzo, M. Malfatti, G. Pedretti, 16 ×16-pixel range-finding CMOS image sensor, in Proceedings of the 30th IEEE European Solid-State Circuits Conference ESSCIRC04, September 2004, pp. 419–422

    Google Scholar 

  22. D.V. OConnor, D. Phillips, Time-correlated Single-Photon Counting (Academic Press, London, UK, 1984)

    Google Scholar 

  23. J.S. Massa, G.S. Buller, A.C. Walker, S. Cova, M. Umasuthan, A.M. Wallace, Time-of-flight optical ranging system based on time-correlated single-photon counting. Appl. Opt. 37(31) (1998)

    Google Scholar 

  24. M.A. Albota et al., Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Lab. J. 13(2) (2002)

    Google Scholar 

  25. G.S. Buller, A.M. Wallace, Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition. IEEE J. Selected Topics Quant. Electr. 13(4) (2007)

    Google Scholar 

  26. A. Al-Azzawi, Photonics: Principles and Practices (CRC Press, Optical Science and Engineering, Boca Raton, 2006)

    Google Scholar 

  27. D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, A. Simoni, A CMOS 3-D imager based on single-photon avalanche diode. IEEE Trans. Circuits Syst. I 54(1), 4–12 (2007)

    Article  Google Scholar 

  28. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo, An 80 ×60 range image sensor based on 10 μm 50MHz lock-in pixels in 0.18 μm CMOS, in Proceedings of the International Conference on Solid-State Circuits (ISSCC10), February 2010, pp. 406–407

    Google Scholar 

  29. T. Spirig, P. Seitz, O. Vietze, F. Heitger, The lock-in CCD-two dimensional synchronous detection of light. IEEE J. Quantum Electron. 31(9), 1705–1708 (1995)

    Article  ADS  Google Scholar 

  30. R. Lange, P. Seitz, Solid-state time-of-flight range camera. IEEE J. Quantum Electron. 37(3), 390–397 (2001)

    Article  ADS  Google Scholar 

  31. W. van der Tempel, R. Grootjans, D. Van Nieuwenhove, M. Kuijk, A 1k-pixel 3D CMOS sensor, in Proceedings of IEEE Sensors Conference, October 2008, pp. 1000–1003

    Google Scholar 

  32. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-photon synchronous detection. J. Solid-State Circuits 44(7), 1977–1989 (2009)

    Article  ADS  Google Scholar 

  33. K. Patorski et al., Progress in Optics (Elsevier Science Publisher/North-Holland, NY, 1989)

    Google Scholar 

  34. P. Koczyk, P. Wiewior, C. Radzewicz, Photon counting statistics – undergraduate experiment. Am. J. Phys. 64(3), 240–245 (1996)

    Article  ADS  Google Scholar 

  35. B.F. Aull, A.H. Loomis, D.J. Young, R.M. Heinrichs, B.J. Felton, P.J. Daniels, D.J. Landers, Geiger-mode avalanche photodiodes for three-dimensional imaging. Lincoln Lab. J. 13, 335–350 (2002)

    Google Scholar 

  36. S. Donati, Photodetectors: Devices Circuits and Applications (Prentice Hall, Englewood, Cliffs, NJ, 1999)

    Google Scholar 

  37. G. Llosa et al., Novel silicon photomultipliers for PET applications. IEEE Trans. Nucl. Sci. 55(3), 877–881 (2008)

    Article  ADS  Google Scholar 

  38. L. Pancheri, D. Stoppa, Low-noise CMOS single-photon avalanche diodes with 32 ns dead time, in Proceedings of IEEE European Solid-State Device Research Conference (ESSDERC07), Monaco, September 2007, pp. 362–365

    Google Scholar 

  39. F. Zappa et al., Monolithic CMOS detector module for photon counting and picosecond timing. Proc. ESSDERC, 341–344 (2004)

    Google Scholar 

  40. M. Gersbach et al., A low-noise single photon detector implemented in a 130 nm CMOS imaging process, Solid-State Electr. 53(7), 803–808 (2009)

    Article  ADS  Google Scholar 

  41. J.A. Richardson et al., Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009)

    Article  ADS  Google Scholar 

  42. L. Pancheri, D. Stoppa, A SPAD-based pixel linear array for high-speed time-gated fluorescence lifetime imaging, in IEEE European Solid-State Circuits Conference (ESSCIRC‘09), Athens, September 2009, pp. 428–431

    Google Scholar 

  43. L. Pancheri, D. Stoppa, A. Simoni, SPAD-based time-gated active pixel for 3D imaging applications, in EOS Conference on Frontiers in Electronic Imaging, Munich, 2009

    Google Scholar 

  44. B. Rae, C. Griffin, K. Muir, J. Girkin, E. Gu, D. Renshaw, E. Charbon, M.D. Dawson, R.K. Henderson, A microsystem for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs, in Proceedings of ISSCC, February 2008, pp. 166–167

    Google Scholar 

  45. B. Rae, C. Griffin, J. McKendry, J. Girkin, H.X. Zhang, E. Gu, D. Renshaw, E. Charbon, M.D. Dawson, R. Henderson, CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements. J. Phys. D: Appl. Phys. 41 (2008)

    Google Scholar 

  46. E. Charbon, S. Donati, An ultrafast single-photon image diagnostics sensor with SPAD arrays for industrial and bio-applications, in 7th International Conference on Advanced Laser Technologies (ALT09), 26 October 2009

    Google Scholar 

  47. D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R. Henderson, M. Gersbach, E. Charbon, A 32 ×32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, in IEEE European Solid-State Circuits Conference (ESSCIRC‘09), September 2009, pp. 204–207

    Google Scholar 

  48. J.-P. Jansson, A. Mäntyniemi, J. Kostamovaara, A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006)

    Article  ADS  Google Scholar 

  49. A.S. Yousif, J.W. Haslett, A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)

    Article  ADS  Google Scholar 

  50. M. Lee, A.A. Abidi, A 9b, 1.25ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue, in Digest IEEE Symposium on VLSI Circuits, June 2007, pp. 168–169

    Google Scholar 

  51. P. Chen, C.C. Chen, Y.S. Shen, A low-cost low-power CMOS time-to-digital converter based on pulse stretching. IEEE Trans. Nucl. Sci. 53(4), 2215–2220 (2006)

    Article  ADS  Google Scholar 

  52. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128 ×128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)

    Article  ADS  Google Scholar 

  53. J. Richardson, R. Walker, L. Grant, E. Charbon, M. Gersbach, D. Stoppa, F. Borghetti, R.K. Henderson, A 32 ×32 50ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in Proceedings of IEEE Custom Integrated Circuits Conference San Jose, USA, September 2009, pp. 77–80

    Google Scholar 

  54. M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, E. Charbon, A parallel 32 ×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology, in IEEE European Solid-State Circuits Conference (ESSCIRC‘09), September 2009, pp. 196–199

    Google Scholar 

  55. S. Donati, G. Martini, M. Norgia, Microconcentrators to recover fill-factor in image photo-detectors with pixel on-board processing circuits. Opt. Exp. 15, 18066–18074 (2007)

    Article  Google Scholar 

  56. D. Li, R. Walker, J. Richardson, B. Rae, A. Nuts, D. Renshaw, R. Henderson, Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm. JOSA A 26(4), 804–814 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. G.-F. Dalla Betta and Dr. L. Pancheri for useful discussion and support in reviewing this chapter, and to all the researchers involved in the MEGAFRAME project (www.megaframe.eu) which contributed in developing many of the ideas here contained. The authors express gratitude in particular to Prof. E. Charbon and Dr. R. Henderson for their valuable contributions in the field of CMOS SPADs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stoppa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoppa, D., Simoni, A. (2011). Single-Photon Detectors for Time-of-Flight Range Imaging. In: Seitz, P., Theuwissen, A. (eds) Single-Photon Imaging. Springer Series in Optical Sciences, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18443-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18443-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18442-0

  • Online ISBN: 978-3-642-18443-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics