Skip to main content

A Petri Net-Fuzzy Predication Approach for Confidence Value of Called Genetic Bases

  • Conference paper
Advances in Computing, Communication and Control (ICAC3 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 125))

  • 2574 Accesses

Abstract

We propose a novel solution for determining the confidence of a particular called genetic base within a sequence being called correctly. This has made measures of confidence of base call important and fuzzy methods have recently been used to approximate confidence by responding to data quality at the calling position. A fuzzy Petri net (FPN) approach to modeling fuzzy rule-based reasoning is proposed to determining confidence values for bases called in DNA sequencing. The proposed approach is to bring DNA bases-called within the framework of a powerful modeling tool FPN. The FPN components and functions are mapped from the different type of fuzzy operators of If-parts and Then-parts in fuzzy rules. The validation was achieved by comparing the results obtained with the FPN model and fuzzy logic using the MATLAB Toolbox; both methods have the same reasoning outcomes. Our experimental results suggest that the proposed models, can achieve the confidence values that matches, of available software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitch, J., Sokhansanj, B.: Genomic engineering moving beyond DNA sequence to function. Proc. IEEE 88, 1949–1971 (1971)

    Article  Google Scholar 

  2. Novak, B., Csikasz-Nagy, A., Gyorffy, B., Chen, K., Tyson, J.: Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophysical Chemistry 72, 185–200 (1998)

    Article  Google Scholar 

  3. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pacific Symposium on Biocomputing 1999, pp. 29–40 (1999)

    Google Scholar 

  4. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, vol. 3, pp. 18–29 (1998)

    Google Scholar 

  5. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on Biocomputing 1999, pp. 17–28 (1999)

    Google Scholar 

  6. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, pp. 338–349 (1999)

    Google Scholar 

  7. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards Biopathway Modeling and Simulation. In: Proceedings of ICATPN, pp. 3–22 (2003)

    Google Scholar 

  8. Fujita, S., Matsui, M., Matsuno, H., Miyano, S.: Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net. IEICE Transactions on Fundamentals of Electronics, CCS E87-A(11), 2919–2928 (2003)

    Google Scholar 

  9. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian network. Bioinform. 19, 2271–2282 (2003)

    Article  Google Scholar 

  10. Vohradsky, J.: Neural networks model of gene expression. The FASEB Journal 15, 846–854 (2002)

    Article  Google Scholar 

  11. Goss, P.J.E., Peccoud, J.: Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1 plasmid replication. In: Pacific Sym. on Bioc., pp. 65–76 (1999)

    Google Scholar 

  12. Hamed, R.I., Ahson, S.I.: A New Approach for Modeling Gene Regulatory Networks Using Fuzzy Petri Nets. Journal of Integrative Bioinformatics 7(1), 1–16 (2010)

    Google Scholar 

  13. Hamed, R.I., Ahson, S.I.: Designing Genetic Regulatory Networks Using Fuzzy Petri Nets Approach. IJAC 7(3), 403–412 (2010)

    Google Scholar 

  14. Chen, S.M., Ke, J.S., Chang, J.F.: Knowledge Representation Using Fuzzy Petri Nets. IEEE Transactions on Knowledge and Data Engineering 2(3), 311–319 (1990)

    Article  Google Scholar 

  15. Hamed, R.I., Ahson, S.I.: Fuzzy Reasoning Boolean Petri Nets Based Method for Modeling and Analysing Genetic Regulatory Networks. In: Ranka, S., Banerjee, A., Biswas, K.K., Dua, S., Mishra, P., Moona, R., Poon, S.-H., Wang, C.-L. (eds.) IC3 2010. CCIS, vol. 94, pp. 530–546. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hamed, R.I., Ahson, S.I., Parveen, R.: From Fuzzy Logic Theory to Fuzzy Petri Nets Predicting Changes in Gene Expression Level. In: International Conference on Methods and Models in Computer Science, December 14-15, pp. 139–145 (2009)

    Google Scholar 

  17. Ressom, H., Natarjan, P., Varghese, R.S., Musavi, M.T.: Applications of fuzzy logic in genomics. Journal of Fuzzy Sets and Systems 152, 125–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qu, W., Shirai, K.: Belief learning in certainty factor model and its application to text categorization. In: Proceedings of the 2003 Joint Conference of the Fourth Inter. Con. on Infor., Comm. and Signal Processing, vol. 12, pp. 1192–1196 (2003)

    Google Scholar 

  19. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  20. Zadeh, L.A.: The concept of linguistic variable and its applications to approximate reasoning-II. Inform. Sci. 8, 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.A.: Precisiated natural language – toward a radical enlargement of the role of natural languages in information processing, decision and control. In: Proceedings of the Ninth International Conference on Neural Information Processing, vol. 1, pp. 1–3 (2002)

    Google Scholar 

  22. Berno, A.: A graph theoretic approach to the analysis of DNA sequencing data. Genome Res. 6(2), 80–91 (1996)

    Article  Google Scholar 

  23. Human Genome Project Information, http://www.ornl.gov/hgmis/

  24. Ewing, B., Hillier, L., Wendl, M., Green, P.: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998)

    Article  Google Scholar 

  25. Negnevitsky, M.: Artificial Intelligent–A Guide to Intelligent Systems. Addison-Wesley, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamed, R.I. (2011). A Petri Net-Fuzzy Predication Approach for Confidence Value of Called Genetic Bases. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication and Control. ICAC3 2011. Communications in Computer and Information Science, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18440-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18440-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18439-0

  • Online ISBN: 978-3-642-18440-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics