Skip to main content

ECG Signal Compression Using Different Techniques

  • Conference paper
Advances in Computing, Communication and Control (ICAC3 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 125))

Abstract

In this paper, a transform based methodology is presented for compression of electrocardiogram (ECG) signal. The methodology employs different transforms such as Discrete Wavelet Transform (DWT), Fast Fourier Transform (FFT) and Discrete Cosine Transform (DCT). A comparative study of performance of different transforms for ECG signal is made in terms of Compression ratio (CR), Percent root mean square difference (PRD), Mean square error (MSE), Maximum error (ME) and Signal-to-noise ratio (SNR). The simulation results included illustrate the effectiveness of these transforms in biomedical signal processing. When compared, Discrete Cosine Transform and Fast Fourier Transform give better compression ratio, while Discrete Wavelet Transform yields good fidelity parameters with comparable compression ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46, 192–202 (1999)

    Article  Google Scholar 

  2. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Michler, K., Luo, S.: Comparing stress ECG enhancement algorithms: with an introduction to a filter bank based approach. IEEE Eng. Med. Biol. Mag. 15, 37–44 (1996)

    Article  Google Scholar 

  3. Ole-Aase, S., Nygaard, R., Husoy, J.H.: A comparative study of some novel ECG data compression technique. In: NORSIG 1998, pp. 273–276 (1998)

    Google Scholar 

  4. Jalaleddine, S.M.S., Hutchens, C.G., Strattan, R.D., Coberly, W.A.: ECG Data Compression Techniques-A Unified Approach. IEEE Transactions on Biomedical Engineering 37, 329–342 (1990)

    Article  Google Scholar 

  5. Koski, A., Juhola, M.: Segmentation of digital signals on estimated compression ratio. IEEE Transactions on Biomedical Engineering 43, 928–938 (1996)

    Article  Google Scholar 

  6. Mammen, C.P., Ramamurthi, B.: Vector quantization for compression of multichannel ECG. IEEE Transactions on Biomedical Engineering 37, 821–825 (1990)

    Article  Google Scholar 

  7. Horspool, R. N., Windels, W. J.: An LZ approach to ECG compression, proceeding IEEE Symp. Computer-based Medical System, 71-76, 1994.

    Google Scholar 

  8. Aydin, M.C.: ECG data compression by sub-band coding. IEEE Electronics Letters 27, 359–360 (1991)

    Article  Google Scholar 

  9. Wang, C.H., Liu, J., Sun, J.: Compression algorithm for electrocardiograms based on sparse decomposition. Front. Electr. Electron. Eng. China 4, 10–14 (2009)

    Article  Google Scholar 

  10. Al-Nashash, H.A.M.: A dynamic Fourier series for the compression of ECG using FFT and adaptive coefficient estimation. Med. Eng. Physics 17, 197–203 (1995)

    Article  Google Scholar 

  11. Weisstein, E.W.: Fast Fourier Transform, From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/FastFourierTransform.html

  12. Al-Hinai, N., Neville, K., Sadik, A.Z., Hussain, Z.M.: Compressed Image Transmission over FFT-OFDM: A Comparative Study. In: Australasian Telecommunication Networks and Applications Conference, pp. 465–469 (2007)

    Google Scholar 

  13. Batista, L.V., Melcher, E.U.M., Carvalho, L.C.: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients. Medical Engineering & Physics 23, 127–134 (2001)

    Article  Google Scholar 

  14. Allen, V.A., Belina, J.: ECG data compression using the discrete cosine transform (DCT). IEEE Proceedings, Computers in Cardiology, 687–690 (1992)

    Google Scholar 

  15. Birney, K.A., Fischer, T.R.: On the Model Modeling of DCT and Subband Image for Data Compression. IEEE Transactions on Image Processing 4, 186–193 (1995)

    Article  Google Scholar 

  16. Aggarwal, V., Patterh, M.S.: Quality Controlled ECG Compression using Discrete Cosine Transform (DCT) and Laplacian Pyramid (LP). In: Multimedia, Signal Processing and Communication Technology, IMPACT 2009, pp. 12–15 (2009)

    Google Scholar 

  17. Rajoub, B.A.: An Efficient Coding Algorithm for the Compression of ECG Signals Using the Wavelet Transform. IEEE Transactions on Biomedical Engineering 49, 355–362 (2002)

    Article  Google Scholar 

  18. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transaction on Pattern Analysis and Machine Intelligence 11 (July 1989)

    Google Scholar 

  19. Kim, B.S., Yoo, S.K., Lee, M.H.: Wavelet-Based Low-Delay ECG Compression Algorithm for Continuous ECG Transmission. IEEE Transaction on Information Technology in Biomedicine 10, 77–83 (2006)

    Article  Google Scholar 

  20. Ahmeda, S.M., Abo-Zahhad, M.: A new hybrid algorithm for ECG signal compression based on the wavelet transformation of the linearly predicted error. Medical Engineering & Physics 23, 117–126 (2001)

    Article  Google Scholar 

  21. Kumari, R.S.S., Sadasivam, V.: A novel algorithm for wavelet based ECG signal coding. Computers and Electrical Engineering 33, 186–194 (2007)

    Article  MATH  Google Scholar 

  22. Chen, J., Wang, F., Zhang, Y., Shi, X.: ECG compression using uniform scalar dead-zone quantization and conditional entropy coding. Medical Engineering & Physics 30, 523–530 (2008)

    Article  Google Scholar 

  23. Blanco-Velasco, M., Cruz-Roldan, F., Godino-Llorente, J.I., Blanco-Velasca, J., Armiens-Aparicio, C., Lopez-ferreras, F.: On the use of PRD and CR parameters for ECG compression. Medical Engineering & Physics 27, 798–802 (2005)

    Article  Google Scholar 

  24. Manikandan, M.S., Dandapat, S.: Wavelet threshold based ECG compression using USZZQ and Huffman coding of DSM. Biomedical Signal Processing and Contol 1, 261–270 (2006)

    Article  Google Scholar 

  25. Brechet, L., Lucas, M.F., Doncarli, C., Farina, D.: Compression of Biomedical Signals With Mother Wavelet Optimization and Best-Basis Wavelet Packet Selection. IEEE Transactions on Biomedical Engineering 54, 2186–2192 (2007)

    Article  Google Scholar 

  26. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings IRE 40, 1098–1101 (1952)

    Article  MATH  Google Scholar 

  27. Tanaka, H.: Data structure of Huffman codes and its application to efficient encoding and decoding. IEEE Transactions Information Theory 33, 154–156 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. MIT-BIH arrhythmia ECG signal database

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ranjeet, K., Kumar, A., Pandey, R.K. (2011). ECG Signal Compression Using Different Techniques. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication and Control. ICAC3 2011. Communications in Computer and Information Science, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18440-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18440-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18439-0

  • Online ISBN: 978-3-642-18440-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics