Skip to main content
  • 1199 Accesses

Abstract

High demand, young and active patients need high performance bearings. Conventional polyethylene bearings have led to wear, osteolysis and failure in high demand patients. Alternative bearings, including: cross-linked polyethylene, metal on metal, ceramic on ceramic and ceramic on metal should be considered for high demand patients. The wear and tribological performance of these different bearing materials are described under normal walking conditions and under adverse conditions of rim loading, which can occur with incorrectly positioned components or abnormal anatomy. Bearing solutions are described that are predicted to give greater than 25 years lifetime in high demand patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour PSM, Barton DC, Fisher J (1995) The influence of contact stress on the wear of UHMWPE for total replacement hip prostheses. Wear 181:250–257

    Google Scholar 

  2. Barbour PSM, Stone MH, Fisher J (1999) A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates. Proc Instn Mech Eng H 214:455–467

    Article  Google Scholar 

  3. Barbour PSM, Stone MH, Fisher J (2000) A hip joint simulator study using new and physiologically scratched femoral heads with ultra-high molecular weight polyethylene acetabular cups. Proc Instn Mech Eng H 214:569–576

    Article  CAS  Google Scholar 

  4. Besong AA, Hailey JL, Ingham E et al (1997) A study of the combined effects of shelf ageing following irradiation in air and counterface roughness on the wear of UHMWPE. Biomed Mater Eng 7:59–65

    PubMed  CAS  Google Scholar 

  5. Besong AA, Tipper JL, Ingham E et al (1998) Quantitative comparison of wear debris from UHMWPE that has and has not been sterilised by gamma irradiation. J Bone Joint Surg Br 80:340–344

    Article  PubMed  CAS  Google Scholar 

  6. Brockett C, Williams S, Jin ZM et al (2007) Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater 13:508–515

    Google Scholar 

  7. Brown C, Fisher J, Ingham E (2006) Biological effects of clinically relevant wear particles from metal-on-metal hip prostheses. Proc Instn Mech Eng H 220:355–369

    Article  CAS  Google Scholar 

  8. Brown C, Williams S, Tipper JL et al (2007) Characterisation of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation. J MaterSci Mater Med 18:819–827

    Article  CAS  Google Scholar 

  9. Clarke MT, Darrah C, Stewart T et al (2005) Long-term clinical, radiological and histopathological follow-up of a well-fixed McKee-Farrar metal-on-metal total hip arthro-plasty. J Arthroplasty 20:542–546

    Article  PubMed  Google Scholar 

  10. Endo M, Tipper JL, Barton DC et al (2002) Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc Instn Mech Eng H 216:111–122

    Article  CAS  Google Scholar 

  11. Firkins PJ, Tipper JL, Ingham E et al (2001) A novel low wearing differential hardness, ceramic-on-metal hip joint prostheses. J Biomech 34:1291–1298

    Article  PubMed  CAS  Google Scholar 

  12. Firkins PJ, Tipper JL, Ingham E et al (2001) Influence of simulator kinematics on the wear of metal-on-metal hip prostheses. Proc Instn Mech Eng H 215:119–121

    Article  CAS  Google Scholar 

  13. Firkins PJ, Tipper JL, Saadatzadeh MR et al (2001) Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng 11:143–157

    PubMed  CAS  Google Scholar 

  14. Fisher J, Dowson D (1991) Tribology of artificial joints. Proc Instn Mech Eng H 205H:73–79

    Article  Google Scholar 

  15. Fisher J, Chan KL, Hailey JL et al (1995) Preliminary study of the effect of ageing following irradiation on the wear of ultrahigh-molecular-weight polyethylene. J Arthroplasty 10:689–692

    Article  PubMed  CAS  Google Scholar 

  16. Fisher J, Firkins P, Reeves EA et al (1995) The influence of scratches to metallic counterfaces on the wear of ultra-high molecular weight polyethylene. Proc Instn Mech Eng H 209:263–264

    Article  CAS  Google Scholar 

  17. Fisher J, Bell J, Barbour PSM et al (2001) A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Instn Mech Eng H 215:127–132

    Article  CAS  Google Scholar 

  18. Fisher J, Jin Z, Tipper J et al (2006) Tribology of alternative bearings. Clin Orthop Relat Res 453:25–34

    Article  PubMed  Google Scholar 

  19. Fisher J, Jennings LM, Galvin AL et al (2010) 2009 Knee Society Presidential Guest Lecture: polyethylene wear in total knees. Clin Orthop Relat Res 468:12–18

    Article  PubMed  Google Scholar 

  20. Galvin AL, Tipper JL, Ingham E et al (2005) Nanometre size wear debris generated from crosslinked and non-crosslinked ultra high molecular weight polyethylene in artificial joints. Wear 259:977–983

    Article  CAS  Google Scholar 

  21. Galvin AL, Williams S, Hatto P et al (2005) Comparison of wear of ultra high molecular weight polyethylene acetabular cups against alumina ceramic and chromium nitride coated femoral heads. Wear 259:972–976

    Article  CAS  Google Scholar 

  22. Galvin AL, Kang L, Tipper JL et al (2006) Wear of crosslinked polyethylene under different tribological conditions. J Mater Sci Mater Med 17:235–243

    Article  PubMed  CAS  Google Scholar 

  23. Galvin AL, Tipper JL, Jennings LM et al (2007) Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations. Proc Instn Mech Eng H 221:1–10

    Article  CAS  Google Scholar 

  24. Galvin AL, Kang L, Udofia I et al (2009) Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses. J Biomech 42:1898–1902

    Article  PubMed  Google Scholar 

  25. Germain MA, Hatton A, Williams S et al (2003) Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials 24:469–479

    Article  PubMed  CAS  Google Scholar 

  26. Green TR, Fisher J, Stone MH et al (1998) Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19: 2297–2302

    Article  PubMed  CAS  Google Scholar 

  27. Green TR, Fisher J, Matthews JB et al (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res Appl Biomater 53:490–497

    Article  CAS  Google Scholar 

  28. Hatton A, Nevelos JE, Nevelos AA et al (2002) Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture micro-dissection of tissues retrieved at revision. Biomaterials 23(16):3429–3440

    CAS  Google Scholar 

  29. Hatton A, Nevelos JE, Matthew JB et al (2003) Effects of clinically relevant alumina ceramic wear particles on TNF-a production by human peripheral blood mononuclear phagocytes. Biomaterials 24:1193–1204

    Article  PubMed  CAS  Google Scholar 

  30. Hu XQ, Isaac GH, Fisher J (2004) Changes in contact area during the bedding-in of different sizes of metal on metal hip prostheses. Biomed Mater Eng 14:145–149

    PubMed  CAS  Google Scholar 

  31. Ingham E, Fisher J (2000) Biological reactions to wear debris in total joint replacement. Proc Instn Mech Eng H 214:21–37

    Article  CAS  Google Scholar 

  32. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26:1271–1286

    Article  PubMed  CAS  Google Scholar 

  33. Ingram JH, Stone M, Fisher J et al (2004)The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials 25:3511–3522

    Article  PubMed  CAS  Google Scholar 

  34. Isaac GH, Thompson J, Williams S et al (2006) Metal-on-metal bearings surfaces: materials, manufacture, design, optimization, and alternatives. Proc Instn Mech Eng H 220:119–133

    Article  CAS  Google Scholar 

  35. Isaac GH, Brockett C, Breckon A et al (2009) Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components. J Bone Joint Surg Br 91:1134–1141

    Article  PubMed  CAS  Google Scholar 

  36. Jin ZM, Dowson D, Fisher J (1997) Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus. Proc Instn Mech Eng H 211: 247–256

    Article  CAS  Google Scholar 

  37. Kang L, Galvin AL, Brown TD et al (2008) Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J Biomech 41:340–346

    Article  PubMed  Google Scholar 

  38. Kang L, Galvin AL, Brown TD et al (2008) Wear simulation of ultra-high molecular weight polyethylene hip implants by incorporating the effects of cross-shear and contact pressure. Proc Inst Mech Eng H 222:1049–1064

    Article  PubMed  CAS  Google Scholar 

  39. Kang L, Galvin AL, Fisher J et al (2009) Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to and sliding distance: effect of head diameter. J Biomech 42:912–918

    Article  PubMed  Google Scholar 

  40. Leslie I, Williams S, Brown C et al (2008) Effect of bearing size on the long-term wear, wear debris, and ion levels of large diameter metal-on-metal hip replacements-an in vitro study. J Biomed Mater Res B Appl Biomater 87: 163–172

    PubMed  Google Scholar 

  41. Leslie IJ, Williams S, Isaac G et al (2009) High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res 467:2259–2265

    Article  PubMed  Google Scholar 

  42. Marrs H, Barton DC, Jones RA et al (1999) Comparative wear under four different tribological conditions of acetylene enhanced crosslinked ultra high molecular weight poly-ethylene. J Mater Sci Mater Med 10:333–342

    Article  PubMed  CAS  Google Scholar 

  43. Matthews JB, Besong AA, Green TR et al (2000) Evaluation of the response of primary human peripheral blood mononuclear phagocyted to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res Appl Biomater 52:296–307

    Article  CAS  Google Scholar 

  44. Minakawa H, Stone MH, Wroblewski BM et al (1998) Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J Bone Joint Surg Br 80:894–899

    Article  PubMed  CAS  Google Scholar 

  45. Nevelos J, Ingham E, Doyle C et al (2000) Microseparation of the centers of alumina-alumna artificial hip joints during simulator testing produces clinically relevant wear and patterns. J Arthroplasty 15:793–795

    Article  PubMed  CAS  Google Scholar 

  46. Nevelos JE, Ingham E, Doyle C et al (2001) The influence of acetabular cup angle on the wear of “Biolox® Forte” alumina ceramic bearing couples in a hip joint simulator. J Mater Sci Mater Med 12:141–144

    Article  PubMed  CAS  Google Scholar 

  47. Nevelos JE, Prudhommeaux F, Hamadouche M et al (2001) Comparative analysis of two different types of alumina-alumina hip prosthesis retrieved for aseptic loosening. J Bone Joint Surg Br 83:598–603

    PubMed  CAS  Google Scholar 

  48. Nevelos J, Shelton JC, Fisher J (2004) Metallurgical considerations in the wear of metal-on-metal hip bearings. Hip Int 14:1–10

    Google Scholar 

  49. Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano-and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958

    Article  PubMed  CAS  Google Scholar 

  50. Pourzal R, Theissmann R, Williams S et al (2009) Subsurface changes of a MoM hip implant below different contact zones. J Mech Behav Biomed Mater 2:186–191

    Article  PubMed  Google Scholar 

  51. Richards L, Brown C, Stone MH et al (2008) Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo. J Bone Joint Surg Br 90:1106–1113

    PubMed  CAS  Google Scholar 

  52. Stewart TD, Tipper JL, Insley G et al (2003) Long-term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation. J Biomed Mater Res B Appl Biomater 66:567–573

    Article  PubMed  Google Scholar 

  53. Tipper JL, Firkins PJ, Ingham E et al (1999) Quantitative analysis of the wear and wear debris from low and high carbon content cobalt chrome alloys used in metal on metal total hip replacements. J Mater Sci Mater Med 10:355–362

    Article  Google Scholar 

  54. Tipper JL, Ingham E, Hailey JL et al (2000) Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley® hip prostheses. J Mater Sci Mater Med 11:117–124

    Article  PubMed  CAS  Google Scholar 

  55. Tipper JL, Firkins PJ, Besong AA et al (2001) Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator. Wear 250:120–128

    Article  Google Scholar 

  56. Tipper JL, Hatton A, Nevelos JE et al (2002) Alumina-alumina artificial hip joints. Part II: characterisation of the wear debris from in vitro hip joints simulations. Biomaterials 23:3441–3448

    CAS  Google Scholar 

  57. Tipper JL, Galvin AL, Williams S et al (2006) Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators. J Biomed Mater Res A 78:473–480

    PubMed  CAS  Google Scholar 

  58. Williams S, Butterfield M, Stewart T et al (2003) Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation. Proc Instn Mech Eng H 217:147–153

    Article  CAS  Google Scholar 

  59. Williams S, Schepers A, Isaac G et al (2007) The 2007 Otto Aufranc Award. Ceramic-on-metal hip arthroplasties. A comparative in vitro and in vivo study. Clin Orthop Relat Res 465:23–32

    Google Scholar 

  60. Williams S, Jalai-Vahid D, Brockett CL et al (2006) Effect of swing phase load on metal-on-metal hip lubrication, friction and wear. J Biomech 39:2274–2281

    Article  PubMed  Google Scholar 

  61. Williams S, Leslie I, Isaac G et al (2008) Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position. J Bone Joint Surg Am 90:111–117

    Article  PubMed  Google Scholar 

  62. Yan Y, Neville A, Dowson D et al (2008) Tribo-corrosion analysis of wear and metal ion release interactions from metal-on-metal and ceramic-on-metal contacts for the application in artificial hip prostheses. Proc Instn Mech Eng J 222:483–492

    Article  CAS  Google Scholar 

  63. Yan Y, Neville A, Dowson D et al (2009) The influence of swing phase load on the electrochemical response, friction and ion release of metal on metal bearings. Proc Inst Mech Eng J 223:303–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Beverland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beverland, D. (2011). Bearings. In: Vidalain, JP., et al. The Corail® Hip System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18396-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18396-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18395-9

  • Online ISBN: 978-3-642-18396-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics