Skip to main content

Simultaneous Screening and Chemical Characterization of Bioactive Compounds Using LC-MS-Based Technologies (Affinity Chromatography)

  • Chapter
  • First Online:
Book cover Effect-Directed Analysis of Complex Environmental Contamination

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

The analyst faces a couple of challenges when screening complex mixtures. Over the past decades, several strategies were developed to overcome these problems. The review presented here provides an overview of the different strategies on the integration of separation sciences, mass spectrometry, and bioactivity screening in a single platform to allow the simultaneous screening and characterization of complex mixtures. The applied strategies can generally be categorized into precolumn and postcolumn principles. While the precolumn methodologies mainly include affinity-based screening, the postcolumn strategies can also employ enzyme activity assays. The different subtypes of these philosophies will be discussed and examples for each of the techniques are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ach:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

ALIS:

Automated ligand identification system

AMQI:

7-acetoxy-1-methylquinolinium iodide

BCD:

Biochemical detection

EDA:

Effect-directed analysis

EGFR:

Endothelial growth factor receptor

ESI:

Electrospray ionization

ESI-MS:

Electrospray ionization mass spectrometry

FAC:

Frontal affinity chromatography

hERα:

Human estrogen receptor α

hERβ:

Human estrogen receptor β

HMQI:

7-hydroxy-1-methylquinolinium iodide

HPLC:

High performance liquid chromatography

IAM:

Immobilized artifical membrane

K d :

Dissociation constant

LC:

Liquid chromatography

LC-MS:

Liquid chromatography mass spectrometry

MMP3:

Human matrix metalloprotease 3

MS:

Mass spectrometry

NET:

Norethisterone

PAB:

Paramagnetic affinity beads

PDA:

Photo diode array

SDH:

Sorbitoldehydrogenase

SEC:

Size exclusion chromatography

SMT:

System monitoring trace

SPE:

Solid phase extraction

TIC:

Total ion chromatogram

References

  1. Koehn FE (2008) New strategies and methods in the discovery of natural product anti-infective agents: the mannopeptimycins. J Med Chem 51:2613–2617

    Article  CAS  Google Scholar 

  2. Barceló D (2007) Effect-directed analysis of key toxicants in european river basins. A review. Environ Sci Pollut Res 14:30–38

    Article  Google Scholar 

  3. Lübcke-von Varel U, Streck G, Brack W (2008) Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A 1185:31–42

    Article  Google Scholar 

  4. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  Google Scholar 

  5. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  6. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  CAS  Google Scholar 

  7. Harvey AL (2007) Natural products as a screening resource. Curr Opin Chem Biol 11:480–484

    Article  CAS  Google Scholar 

  8. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  9. Tuulia H (2009) Novel sample extraction and chromatographic techniques for environmental analysis. LC-GC Europe 22:172–179

    Google Scholar 

  10. Brack W, Schmitt-Jansen M, Machala M et al (2008) How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390:1959–1973

    Article  CAS  Google Scholar 

  11. He H, Williamson RT, Shen B et al (2002) Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124:9729–9736

    Article  CAS  Google Scholar 

  12. Jonker N, Kool J, Krabbe JG et al (2008) Screening of protein-ligand interactions using dynamic protein-affinity chromatography solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1205:71–77

    Article  CAS  Google Scholar 

  13. Jonker N, Kretschmer A, Kool J et al (2009) Online magnetic bead dynamic protein-affinity selection coupled to LC/MS for the screening of pharmacologically active compounds. Anal Chem 81:4263–4270

    Article  CAS  Google Scholar 

  14. Muckenschnabel I, Falchetto R, Mayr LM et al (2004) SpeedScreen: label-free liquid chromatography-mass spectrometry-based high-throughput screening for the discovery of orphan protein ligands. Anal Biochem 324:241–249

    Article  CAS  Google Scholar 

  15. Brack W, Kind T, Hollert H et al (2003) Sequential fractionation procedure for the identification of potentially cytochrome P4501A-inducing compounds. J Chromatogr A 986:55–66

    Article  CAS  Google Scholar 

  16. Tammela P, Wennberg T, Vuorela H et al (2004) HPLC micro-fractionation coupled to a cell-based assay for automated on-line primary screening of calcium antagonistic components in plant extracts. Anal Bioanal Chem 380:614–618

    Article  CAS  Google Scholar 

  17. de Boer AR, Lingeman H, Niessen WMA et al (2007) Mass spectrometry-based biochemical assays for enzyme-inhibitor screening. Trends Analyt Chem 26:867–883

    Article  Google Scholar 

  18. de Jong CF, Derks RJE, Bruyneel B et al (2006) High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts. J Chromatogr A 1112:303–310

    Article  Google Scholar 

  19. Oosterkamp AJ, Irth H, Tjaden UR et al (1997) Theoretical concepts of on-line liquid chromatographic- biochemical detection systems II. Detection systems based on labelled affinity proteins. J Chromatogr A 787:37–46

    Article  CAS  Google Scholar 

  20. Oosterkamp AJ, Irth H, Villaverde Herraiz MT et al (1997) Theoretical concepts of on-line liquid chromatographic-biochemical detection systems I. Detection systems based on labelled ligands. J Chromatogr A 787:27–35

    Article  CAS  Google Scholar 

  21. Schebb N, Faber H, Maul R et al (2009) Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal Bioanal Chem 394:1361–1373

    Article  CAS  Google Scholar 

  22. Giera M, Heus F, Janssen L et al (2009) Microfractionation revisited: a 1536 well high resolution screening assay. Anal Chem 81:5460–5466

    Article  CAS  Google Scholar 

  23. Annis DA, Nickbarg E, Yang X et al (2007) Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol 11:518–526

    Article  CAS  Google Scholar 

  24. Deng G, Sanyal G (2006) Applications of mass spectrometry in early stages of target based drug discovery. J Pharm Biomed Anal 40:528–538

    Article  CAS  Google Scholar 

  25. Schriemer DC, Bundle DR, Li L et al (1998) Micro-scale frontal affinity chromatography with mass spectrometric detection: a new method for the screening of compound libraries. Angew Chem Int Ed Engl 37:3383–3387

    Article  CAS  Google Scholar 

  26. Calleri E, Temporini C, Caccialanza G et al (2009) Target-based drug discovery: the emerging success of frontal affinity chromatography coupled to mass spectrometry. ChemMedChem 4:905–916

    Article  CAS  Google Scholar 

  27. Moaddel R, Calleri E, Massolini G et al (2007) The synthesis and initial characterization of an immobilized purinergic receptor (P2Y1) liquid chromatography stationary phase for online screening. Anal Biochem 364:216–218

    Article  CAS  Google Scholar 

  28. Ng W, Dai J-R, Slon-Usakiewicz JJ et al (2007) Automated multiple ligand screening by frontal affinity chromatography-mass spectrometry (FAC-MS). J Biomol Screen 12:167–174

    Article  CAS  Google Scholar 

  29. Kasai K-I, Oda Y, Nishikata M et al (1986) Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules. J Chromatogr B Biomed Sci Appl 376:33–47

    Article  CAS  Google Scholar 

  30. Kelly MA, McLellan TJ, Rosner PJ (2001) Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal Chem 74:1–9

    Article  Google Scholar 

  31. Luo H, Chen L, Li Z et al (2003) Frontal immunoaffinity chromatography with mass spectrometric detection: a method for finding active compounds from traditional Chinese herbs. Anal Chem 75:3994–3998

    Article  CAS  Google Scholar 

  32. Zhu L, Chen L, Luo H et al (2003) Frontal affinity chromatography combined on-line with mass spectrometry: a tool for the binding study of different epidermal growth factor receptor inhibitors. Anal Chem 75:6388–6393

    Article  CAS  Google Scholar 

  33. Moaddel R, Bullock PL, Wainer IW (2004) Development and characterization of an open tubular column containing immobilized P-glycoprotein for rapid on-line screening for P-glycoprotein substrates. J Chromatogr B 799:255–263

    Article  CAS  Google Scholar 

  34. Cancilla MT, Leavell MD, Chow J et al (2000) Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries. Proc Natl Acad Sci U S A 97:12008–12013

    Article  CAS  Google Scholar 

  35. Ferrance JP (2007) Gellan beads as a transparent media for protein immobilization and affinity capture. J Chromatogr A 1165:86–92

    Article  CAS  Google Scholar 

  36. Schlosser G, Vekéy K, Malorni A et al (2005) Combination of solid-phase affinity capture on magnetic beads and mass spectrometry to study non-covalent interactions: example of minor groove binding drugs. Rapid Commun Mass Spectrom 19:3307–3314

    Article  CAS  Google Scholar 

  37. Hu F, Zhang H, Lin H et al (2008) Enzyme inhibitor screening by electrospray mass spectrometry with immobilized enzyme on magnetic silica microspheres. J Am Soc Mass Spectrom 19:865–873

    Article  CAS  Google Scholar 

  38. Siemoneit U, Hofmann B, Kather N et al (2008) Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem Pharmacol 75:503–513

    Article  CAS  Google Scholar 

  39. Cloutier TE, Comess KM (2007) In: Wanner K, Höfner G (ed) Mass spectrometry in medicinal chemistry, VCH, Weinheim, pp 157–184

    Google Scholar 

  40. van Breemen RB, Huang C-R, Nikolic D et al (1997) Pulsed ultrafiltration mass spectrometry: a new method for screening combinatorial libraries. Anal Chem 69:2159–2164

    Article  Google Scholar 

  41. Wickramasinghe SR, Bower SE, Chen Z et al (2009) Relating the pore size distribution of ultrafiltration membranes to dextran rejection. J Memb Sci 340:1–8

    Article  CAS  Google Scholar 

  42. Zhang H, Gu Q, Liang X et al (2004) Screening for topoisomerase I binding compounds by high-performance liquid chromatography-mass spectrometry. Anal Biochem 329:173–179

    Article  CAS  Google Scholar 

  43. Comess KM, Schurdak ME, Voorbach MJ et al (2006) An ultraefficient affinity-based high-throughout screening process: application to bacterial cell wall biosynthesis enzyme MurF. J Biomol Screen 11:743–754

    Article  CAS  Google Scholar 

  44. Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240:155–166

    Article  CAS  Google Scholar 

  45. Wabnitz PA, Loo JA (2002) Drug screening of pharmaceutical discovery compounds by micro-size exclusion chromatography/mass spectrometry. Rapid Commun Mass Spectrom 16:85–91

    Article  CAS  Google Scholar 

  46. Blom KF, Larsen BS, McEwen CN (1998) Determining affinity-selected ligands and estimating binding affinities by online size exclusion chromatography/liquid chromatography-mass spectrometry. J Comb Chem 1:82–90

    Article  Google Scholar 

  47. Dastmalchi K, Ollilainen V, Lackman P et al (2009) Acetylcholinesterase inhibitory guided fractionation of Melissa officinalis L. Bioorg Med Chem 17:867–871

    Article  CAS  Google Scholar 

  48. Scher JM, Speakman J-B, Zapp J et al (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 65:2583–2588

    Article  CAS  Google Scholar 

  49. Giera M, Plössl F, Bracher F (2007) Fast and easy in vitro screening assay for cholesterol biosynthesis inhibitors in the post-squalene pathway. Steroids 72:633–642

    Article  CAS  Google Scholar 

  50. Giera M, Renard D, Plössl F et al (2008) Lathosterol side chain amides-A new class of human lathosterol oxidase inhibitors. Steroids 73:299–308

    Article  CAS  Google Scholar 

  51. Renard D, Perruchon J, Giera M et al (2009) Side chain azasteroids and thiasteroids as sterol methyltransferase inhibitors in ergosterol biosynthesis. Bioorg Med Chem 17:8123–8137

    Article  CAS  Google Scholar 

  52. Bugni T, Harper M, McCulloch M et al (2008) Fractionated marine invertebrate extract libraries for drug discovery. Molecules 13:1372–1383

    Article  CAS  Google Scholar 

  53. Wolfender JL, Queiroz EF, Hostettmann K (2005) Phytochemistry in the microgram domain: a LC-NMR perspective. Magn Res Chem 43:697–709

    Article  CAS  Google Scholar 

  54. Berg M, Undisz K, Thiericke R et al (2001) Evaluation of liquid handling conditions in microplates. J Biomol Screen 6:47–56

    CAS  Google Scholar 

  55. de Boer AR, Alcaide-Hidalgo JM, Krabbe JG et al (2005) High-temperature liquid chromatography coupled on-line to a continuous-flow biochemical screening assay with electrospray ionization mass spectrometric detection. Anal Chem 77:7894–7900

    Article  Google Scholar 

  56. Hirata J, Ariese F, Gooijer C et al (2003) Continuous-flow protease assay based on fluorescence resonance energy transfer. Anal Chim Acta 478:1–10

    Article  CAS  Google Scholar 

  57. In Kyung R, Natalie A, Teus L et al (2003) Determining acetylcholinesterase inhibitory activity in plant extracts using a fluorimetric flow assay. Phytochem Anal 14:145–149

    Article  Google Scholar 

  58. Shi S-Y, Zhang Y-P, Jiang X-Y et al (2009) Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. Trends Analyt Chem 28:865–877

    Article  CAS  Google Scholar 

  59. Letzel T (2008) Real-time mass spectrometry in enzymology. Anal Bioanal Chem 390:257–261

    Article  CAS  Google Scholar 

  60. Schenk T, Appels NMGM, van Elswijk DA et al (2003) A generic assay for phosphate-consuming or: releasing enzymes coupled on-line to liquid chromatography for lead finding in natural products. Anal Biochem 316:118–126

    Article  CAS  Google Scholar 

  61. de Boer AR, Letzel T, van Elswijk DA et al (2004) On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrometry. Anal Chem 76:3155–3161

    Article  Google Scholar 

  62. Schebb NH, Heus F, Saenger T et al (2008) Development of a countergradient parking system for gradient liquid chromatography with online biochemical detection of serine protease inhibitors. Anal Chem 80:6764–6772

    Article  CAS  Google Scholar 

  63. Sabbagh MN (2009) Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatr Pharmacother 7:167–185

    Article  CAS  Google Scholar 

  64. Ingkaninan K, Hazekamp A, de Best CM et al (2000) The application of HPLC with on-line coupled uv/ms-biochemical detection for isolation of an acetylcholinesterase inhibitor from Narcissus ‘Sir Winston Churchill’. J Nat Prod 63:803–806

    Article  CAS  Google Scholar 

  65. de Vlieger JSB, Kolkman AJ, Ampt KAM et al (2010) Determination and identification of estrogenic compounds generated with biosynthetic enzymes using hyphenated screening assays, high resolution mass spectrometry and off-line NMR. J Chromatogr B 878:667–674

    Article  Google Scholar 

  66. de Boer AR, Bruyneel B, Krabbe JG et al (2005) A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry. Lab Chip 5:1286–1292

    Article  Google Scholar 

  67. Suda TA H, Hamada M, Takeuchi T, Umezawa H (1972) Antipain, a new protease inhibitor isolated from Actinomycetes. J Antibiot 25:263–265

    Google Scholar 

  68. Barrett AJ, Kembhavi AA, Brown MA et al (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201:189–198

    CAS  Google Scholar 

  69. Giera M, de Vlieger JSB, Lingeman H et al (2010) Structural elucidation of biologically active neomycin N-octyl derivatives in a regioisomeric mixture by means of liquid chromatography/ion trap time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:1439–1446

    Article  CAS  Google Scholar 

  70. Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613

    Article  Google Scholar 

  71. Kuch B, Kern F, Metzger JW et al (2010) Effect-related monitoring: estrogen-like substances in groundwater. Environ Sci Pollut Res 17:250–260

    Article  CAS  Google Scholar 

  72. Roepcke CBS, Muench SB, Schulze H et al (2010) Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection. J Agric Food Chem 58:8748–8756

    Article  CAS  Google Scholar 

  73. Kool J, de Kloe GE, Bruyneel B et al (2010) Online fluorescence enhancement assay for the acetylcholine binding protein with parallel mass spectrometric identification. J Med Chem 53:4720–4730

    Article  CAS  Google Scholar 

  74. Liu PS, Lin CM, Pan CY et al (2003) Butyl benzyl phthalate blocks Ca2+ signaling and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells. Neurotoxicology 24:97–105

    Article  CAS  Google Scholar 

  75. Kim SM, Park JG, Baek WK et al (2008) Cadmium specifically induces MKP-1 expression via the glutathione depletion-mediated p38 MAPK activation in C6 glioma cells. Neurosci Lett 440:289–293

    Article  CAS  Google Scholar 

  76. Hermansson V, Asp V, Bergman Å et al (2007) Comparative CYP-dependent binding of the adrenocortical toxicants 3-methylsulfonyl–DDE and o, p′-DDD in Y-1 adrenal cells. Arch Toxicol 81:793–801

    Article  CAS  Google Scholar 

  77. Kaisarevic S, von Varel UL, Orcic D et al (2009) Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia. Chemosphere 77:907–913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of the author M. Giera was supported by the German Academic Exchange program (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Giera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giera, M., Irth, H. (2011). Simultaneous Screening and Chemical Characterization of Bioactive Compounds Using LC-MS-Based Technologies (Affinity Chromatography). In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_6

Download citation

Publish with us

Policies and ethics