Skip to main content

Diagnostic Tools for Effect-Directed Analysis of Mutagens, AhR Agonists, and Endocrine Disruptors

  • Chapter
  • First Online:
Effect-Directed Analysis of Complex Environmental Contamination

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

Environmental toxicants, such as mutagens and endocrine disruptors, can cause impact on human and environmental health and are distributed in different environmental matrices as complex mixtures. From the thousands of known toxic compounds, only a few are already regulated and monitored. There is evidence that several unidentified compounds are present in the environment due to the fact that when bioassays are performed the responses usually do not correlate with the analyzed target compounds. In order to minimize exposure of humans and biota to these compounds, it is necessary that they are accurately and clearly identified. This has always been a challenge to environmental chemists. For this purpose, analytical integrated strategies such as effect-directed analysis are useful. By combining differential extractions, chemical analysis, and bioassays it has been possible to identify important new chemical classes of environmental toxicants. This chapter describes bioassays that can be used in effect-directed identification studies, their advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brusick DJ, Gopalan HNB, Heseltine E et al (1992) Assessing the risk of genetic damage. Hodder and Stoughton, Gaborone

    Google Scholar 

  2. Dearfield KL, Cimino MC, McCarroll NE et al (2002) Genotoxicity risk assessment: a proposed classification strategy. Mutat Res 521:121–135

    CAS  Google Scholar 

  3. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149

    Article  CAS  Google Scholar 

  4. Marvin CH, Hewitt ML (2007) Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material. Mutat Res 636:4–35

    Article  CAS  Google Scholar 

  5. Umbuzeiro GA, Roubicek DA, Rech CM et al (2004) Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures. Chemosphere 54:1589–1597

    Article  CAS  Google Scholar 

  6. Nukaya H, Yamashita J, Tsuji K et al (1997) Isolation and chemical structural determination of a novel aromatic amine mutagen in water from the Nishitakase River in Kyoto. Chem Res Toxicol 10:1061–1066

    Article  CAS  Google Scholar 

  7. Holmbom BR, Voss RH, Mortimer RD et al (1981) Isolation and identification of an Ames-mutagenic compound present in kraft chlorination effluents. Tappi 64:171–174

    Google Scholar 

  8. Hemming J, Holmbom B, Reunanem M et al (1986) Determination of the strong mutagen (3-chloro-4-dichloromethyl)-5-hydroxy-2(5H)-furanone in chlorinated drinking and humic waters. Chemosphere 15:549–556

    Article  Google Scholar 

  9. Felton JS, Knize MG, Shen NH et al (1986) The isolation and identification of a new mutagen from fried ground beef: 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP). Carcinogenesis 7:1081–1086

    Article  CAS  Google Scholar 

  10. Enya T, Suzuki H, Watanabe T et al (1997) 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ Sci Technol 31:2772–2776

    Article  CAS  Google Scholar 

  11. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  12. Prival MJ, Mitchell VD (1982) Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mutat Res 97:103–116

    CAS  Google Scholar 

  13. Kushida H, Fujita K, Suzuki A (2000) Development of a Salmonella tester strain sensitive to promutagenic N-nitrosamines: expression of recombinant CYP2A6 and human NADPH-cytochrome P450 reductase in S. typhimurium YG7108. Mutat Res 471:135–143

    CAS  Google Scholar 

  14. Oda Y, Watanabe T, Terao Y (2008) Genotoxic activation of 2 phenylbenzotriazole-type compounds by human cytochrome P4501A1 and N-acetyltransferase expressed in Salmonella typhimurium umu strains. Mutat Res 654:52–57

    CAS  Google Scholar 

  15. Oda Y, Hirayama T, Watanabe T (2009) Genotoxic activation of the environmental pollutant 3, 6-dinitrobenzo[e]pyrene in Salmonella typhimurium umu strains expressing human cytochrome P450 and N-acetyltransferase. Toxicol Lett 188:258–262

    Article  CAS  Google Scholar 

  16. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    CAS  Google Scholar 

  17. Kado NY, Langley D, Eisenstadt E (1983) A simple modification of the Salmonella liquid-incubation assay. Mutat Res 121:25–32

    Article  CAS  Google Scholar 

  18. Fluckiger-Isler S, Baumeister M, Braun K et al (2004) Assessment of the performance of the Ames II assay: a collaborative study with 19 coded compounds. Mutat Res 558:181–197

    CAS  Google Scholar 

  19. Houk VS (1992) The genotoxicity of industrial wastes and effluents: a review. Mutat Res 277:91–138

    CAS  Google Scholar 

  20. Umbuzeiro GA, Freeman H, Warren SH et al (2005) Mutagenicity evaluation of the commercial product CI Disperse Blue 291 using different protocols of the Salmonella assay. Food Chem Toxicol 43:49–56

    Article  CAS  Google Scholar 

  21. Fetterman BA, Kim BS, Margolin BH et al (1997) Predicting rodent carcinogenicity from mutagenic potency measured in the Ames salmonella assay. Environ Mol Mutagen 29:312–322

    Article  CAS  Google Scholar 

  22. DeMarini DM, Gudi R, Szkudlinska A et al (2008) Genotoxicity of 10 cigarette smoke condensates in four test systems: comparisons between assays and condensates. Mutat Res 650:15–29

    CAS  Google Scholar 

  23. Kummrow F, Rech CM, Coimbrão CA et al (2003) Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples. Mutat Res 541:103–113

    CAS  Google Scholar 

  24. Umbuzeiro GA, Freeman H, Warren S et al (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    Article  CAS  Google Scholar 

  25. Chen G, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res 567:151–225

    Article  CAS  Google Scholar 

  26. Oliveira DP, Kuhlmann ML, Umbuzeiro GA (2006) Evaluation of the presence of mutagenic dyes in sediments from Cristais River. Soil Sediment Contam 15:455–462

    Article  Google Scholar 

  27. Aouadene A, Di Giorgio C, Sarrazin L et al (2008) Evaluation of the genotoxicity of river sediments from industrialized and unaffected areas using a battery of short-term bioassays. Environ Mol Mutagen 49:283–299

    Article  CAS  Google Scholar 

  28. Courty B, Le Curieux F, Milon V et al (2004) Influence of extraction parameters on the mutagenicity of soil samples. Mutat Res 565:23–34

    CAS  Google Scholar 

  29. Watanabe T, Takahashi K, Konishi E et al (2008) Mutagenicity of surface soil from residential areas in Kyoto city, Japan, and identification of major mutagens. Mutat Res 649:201–212

    CAS  Google Scholar 

  30. Matsui K, Yamada M, Imaib M et al (2006) Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens. DNA Repair 5:465–478

    Article  CAS  Google Scholar 

  31. Yamada M, Matsui K, Sofuni T et al (1997) New tester strains of Salmonella typhimurium lacking O6-methylguanine DNA methyltransferases and highly sensitive to mutagenic alkylating agents. Mutat Res 381:15–24

    Article  CAS  Google Scholar 

  32. Sharma AK, Jensen KA, Rank J et al (2007) Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air. Mutat Res 633:95–111

    CAS  Google Scholar 

  33. White SS, Birnbaum LS (2009) An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:197–211

    CAS  Google Scholar 

  34. Brack W, Kind T, Hollert H et al (2003) A sequential fractionation procedure for the identification of potentially cytochrome P4501A-inducing compounds. J Chromatogr A 986:55–66

    Article  CAS  Google Scholar 

  35. Brack W, Schirmer K, Erdinger L et al (2002) Effect-directed fractionation and identification of cytochrome P4501A-inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environ Toxicol Chem 21:2654–2662

    Article  CAS  Google Scholar 

  36. Brack W, Schirmer K (2003) Effect-directed identification of oxygen and sulphur heterocycles as major polycyclic aromatic cytochrome P4501A-inducers in contaminated sediment. Environ Sci Technol 37:3026–3070

    Article  Google Scholar 

  37. Sundberg H, Ishaq R, Akerman G et al (2005) A bio-effect directed fractionation study for toxicological and chemical characterization of organic compounds in bottom sediment. Toxicol Sci 84:63–72

    Article  CAS  Google Scholar 

  38. Keiter S, Grund S, van Bavel B et al (2008) Activities and identification of arylhydrocarbon receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2019

    Article  CAS  Google Scholar 

  39. Wölz J, Brack W, Moehlenkamp C et al (2010) Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events. Sci Total Environ 408:3327–3333

    Article  Google Scholar 

  40. Soontjens CD, Holmberg K, Westerholm R et al (1997) Characterization of polycyclic aromatic compounds in diesel exhaust particulate extract responsible for aryl hydrocarbon receptor activity. Atmos Environ 31:219–225

    Article  CAS  Google Scholar 

  41. Hamers T, van Schaardenburg MD, Felzel EC et al (2000) The application of reporter gene assays for the determination of the toxic potency of diffuse air pollution. Sci Total Environ 262:159–174

    Article  CAS  Google Scholar 

  42. Vondráček J, Machala M, Minksová K et al (2001) Monitoring river sediments contaminated predominantly with polyaromatic hydrocarbons by chemical and in vitro bioassay techniques. Environ Toxicol Chem 20:1499–1506

    Google Scholar 

  43. Hilscherová K, Kannan K, Kang YS et al (2001) Characterization of dioxin-like activity of sediments from a Czech river basin. Environ Toxicol Chem 20:2768–2777

    Article  Google Scholar 

  44. Stronghorst J, Leonards P, Murk AJ (2002) Using the dioxin receptor-CALUX in vitro bioassay to screen marine harbor sediments for compounds with dioxin-like mode of action. Environ Toxicol Chem 21:2552–2561

    Google Scholar 

  45. Ciganek M, Neca J, Adamec V et al (2004) A combined chemical and bioassay analysis of traffic-emitted polycyclic aromatic hydrocarbons. Sci Total Environ 334–335:141–148

    Google Scholar 

  46. Hurst MR, Balaam J, Yin L (2004) Determination of dioxin and dioxin-like compounds in sediments from UK esturiaries using a bio-analytical approach: chemical-activated luciferase expression (CALUX) assay. Mar Pollut Bull 49:648–658

    Article  CAS  Google Scholar 

  47. Koh CH, Khim JS, Kannan K et al (2004) Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs and 2, 3, 7, 8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environ Pollut 132:489–501

    Article  CAS  Google Scholar 

  48. Klamer HJC, Leonards PEG, Lamoree MH et al (2005) A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58:1579–1587

    Article  CAS  Google Scholar 

  49. Houtman CJ, Booij P, Jover E et al (2006) Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere 65:2244–2252

    Article  CAS  Google Scholar 

  50. Khim JS, Villeneuve DL, Kannan K et al (1999) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 2. In vitro gene expression assay. Environ Sci Technol 33:4206–4211

    Article  CAS  Google Scholar 

  51. Legler J, Dennekamp M, Vethaak AD et al (2002) Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci Total Environ 293:69–83

    Article  CAS  Google Scholar 

  52. Legler J, van den Brink CE, Brouwer A et al (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66

    Article  CAS  Google Scholar 

  53. Furuichi T, Kanna K, Giesy JP et al (2004) Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay. Water Res 38:4491–4501

    Article  CAS  Google Scholar 

  54. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  55. Thomas KV, Hurst MR, Matthiessen P et al (2001) Characterization of estrogenic compounds in water samples collected from United Kingdom estuaries. Environ Toxicol Chem 20:2165–2170

    Article  CAS  Google Scholar 

  56. Thomas KV, Balaam J, Hurst M et al (2004) Potency and characterization of estrogen-receptor agonists in United Kingdom estuarine sediments. Environ Toxicol Chem 23:471–479

    Article  CAS  Google Scholar 

  57. Céspedes R, Petrovic M, Raldúa D et al (2004) Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinants yeast assay and chemical analysis by LC-ESI-MS. Anal Bioanal Chem 378:697–708

    Article  Google Scholar 

  58. Viganó L, Benfenati E, van Cauwenberge A et al (2008) Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assay. Chemosphere 73:1078–1089

    Article  Google Scholar 

  59. Thomas KV, Langford K, Petersen K et al (2009) Effect-directed identification of naphthenic acids as important in vitro xeno-estrogens and anti-androgens in North Sea offshore produced water discharges. Environ Sci Technol 43:8066–8071

    Article  CAS  Google Scholar 

  60. Sanseverino J, Gupta RK, Layton AC et al (2005) Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol 71:4455–4460

    Article  CAS  Google Scholar 

  61. Bovee TFH, Helsdingen RJR, Rietjens IMCM et al (2004) Rapid yeast estrogen bioassays stably expressing human estrogen receptors and green fluorescent protein: a comparison of different compounds with both receptor types. J Steroid Biochem Mol Biol 91:99–109

    Article  CAS  Google Scholar 

  62. Plíšková M, Vondráček J, Fernandez-Canton R et al (2005) Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum. Environ Health Perspect 113:1277–1284

    Article  Google Scholar 

  63. Houtman JC, van Oostveen AM, Brouwer A et al (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    Article  CAS  Google Scholar 

  64. Tong SK, Mouriec K, Kuo MW et al (2009) A Cyp19a1b-GFP (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis 73:67–73

    Article  Google Scholar 

  65. Sonneveld E, Jansen HJ, Riteco JAC et al (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    Article  CAS  Google Scholar 

  66. Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339

    Article  CAS  Google Scholar 

  67. Eldridge ML, Sanseverino J, Layton AC et al (2007) Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl Environ Microbiol 73:6012–6018

    Article  CAS  Google Scholar 

  68. Terouanne B, Tahiri B, Georget V et al (2000) A stable prostatic biolumniscent cell line to investigate androgen and antiandrogen effects. Mol Cell Endocrinol 160:39–49

    Article  CAS  Google Scholar 

  69. Wilson VS, Bobseine K, Lambright CR et al (2002) A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists. Toxicol Sci 66:69–81

    Article  CAS  Google Scholar 

  70. Thomas KV, Hurst MR, Matthiessen P et al (2002) An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries. Environ Toxicol Chem 21:1456–1461

    Article  CAS  Google Scholar 

  71. Weiss JM, Andersson PL, Lamoree MH et al (2009) Competitive binding of perfluorinated compounds to the thyroxine transport protein transthyretin. Toxicol Sci 109:206–216

    Article  CAS  Google Scholar 

  72. Urbatzka R, Van Cauwenberge A, Maggioni S et al (2007) Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere 67:1080–1087

    Article  CAS  Google Scholar 

  73. Somack R, Nordeen SK, Eberhardt NL (1982) Photoaffinity labeling of human thyroxine-binding prealbumin with thyroxine and N-(ethyl-2-diazomalonyl)thyroxine. Biochemistry 21:5651–5660

    Article  CAS  Google Scholar 

  74. Purkey H, Palaninathan SK, Kent KC et al (2004) Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11:1719–1728

    Article  CAS  Google Scholar 

  75. Marchesini GR, Meulenberg EP, Haasnoot W et al (2006) Biosensor recognition of thyroid-disrupting chemicals using transport proteins. Anal Chem 78:1107–1114

    Article  CAS  Google Scholar 

  76. Lans MC, Klasson-Wheler E, Willemsen M et al (1993) Structure-dependent, competetive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact 88:7–21

    Article  CAS  Google Scholar 

  77. Hamers T, Kamstra JK, Sonneveld E et al (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92:157–173

    Article  CAS  Google Scholar 

  78. Ucan-Marin F, Arukwe A, Mortensen A et al (2010) Recombinant albumin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones. Environ Sci Technol 44:497–504

    Article  CAS  Google Scholar 

  79. Weiss JM, Hamers T, Thomas KV et al (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394:1385–1397

    Article  CAS  Google Scholar 

  80. Houtman CJ, Cenijn PH, Hamers T et al (2004) Toxicological profiling of sediment using in vitro bioassays, with emphasis on endocrine disruption. Environ Toxicol Chem 23:32–40

    Article  CAS  Google Scholar 

  81. Machala M, Vondráček J, Bláha L et al (2001) Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res 497:49–62

    CAS  Google Scholar 

  82. Bandow N, Altenburger R, Luebke-von Varel U et al (2009) Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. Environ Sci Technol 43:3891–3896

    Article  CAS  Google Scholar 

  83. Kummrow F, Rech CM, Coimbrão CA et al (2006) Blue rayon-anchored technique/Salmonella microsome microsuspension assay as a tool to monitor for genotoxic polycyclic compounds in Santos estuary. Mutat Res 609:60–67

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Fábio Kummrow and Errol Zeiger for the valuable comments and MODELKEY project [Contract-No. 511237 (GOCE)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Umbuzeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Umbuzeiro, G., Machala, M., Weiss, J. (2011). Diagnostic Tools for Effect-Directed Analysis of Mutagens, AhR Agonists, and Endocrine Disruptors. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_4

Download citation

Publish with us

Policies and ethics