Skip to main content

Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

Whole sediment toxicity identification evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine organisms. The focus of these methods included nonionic organic contaminants, cationic and anionic metals, and ammonia. This chapter discusses innovations in whole sediment TIE manipulations and endpoints developed primarily over the last 10 years. Innovations such as the use of supercritical fluid extraction as a Phase III manipulation, Phase II methods for identifying pyrethroid, organophosphate, and carbamate pesticides, and the integration of genomic endpoints into the TIE structure are described. In North America, recently implemented environmental regulations require the diagnosis and identification of environmental stressors as part of the total maximum daily loading process. These regulations are likely to result in an increase in the conduct of whole sediments TIEs and encourage the development and application of more innovations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Research Council (2001) A risk-management strategy for PCB-contaminated sediments. National Academy Press, Washington, DC

    Google Scholar 

  2. National Research Council (2003) Bioavailability of contaminants in soils and sediments: processes, tools and applications. National Academy Press, Washington, DC

    Google Scholar 

  3. Mount DI, Anderson-Carnahan L (1988) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures (EPA/600-3-88/034). US EPA, Office of Research and Development, Duluth, MN

    Google Scholar 

  4. Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations: Phase II toxicity identification procedures (EPA/600-3-88/035). US EPA, Office of Research and Development, Duluth, MN

    Google Scholar 

  5. Norberg-King T, Mount DI, Durhan EJ, Ankley GT, Burkhard LP, Amato J, Lukasewycz M, Schubauer-Berigan MK, Anderson-Carnahan L (1991) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures (EPA-699/6-91/003). US EPA, Office of Research and Development, Duluth, MN

    Google Scholar 

  6. Mount DI, Norberg-King T, Ankley G, Burkhard LP, Durhan EJ, Schubauer-Berigan MK, Lukasewycz M (1993) Methods for aquatic toxicity identification evaluations: Phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity (EPA/600/R-92/081). US EPA, Office of Research and Development, Duluth, MN

    Google Scholar 

  7. Burgess RM, Ho KT, Morrison GE, Chapman G, Denton DL (1996) Marine toxicity identification evaluation (TIE) procedures manual: Phase I guidance document (600/R-96/054 USEPA). US EPA, Office of Research and Development, Washington, DC

    Google Scholar 

  8. Ankley G, Schubauer-Berigan M, Dierkes J, Lukasewycz M (1992) Sediment toxicity identification evaluation: Phase I (characterization), Phase II (identification) and Phase III (confirmation) modifications of effluent procedures Tech (EPA 08-91). US EPA, Office of Research and Development, Duluth, MN

    Google Scholar 

  9. Anderson B, Hunt J, Phillips B, Tjeerdema R (2006) Navigating the TMDL process: sediment toxicity (02-WSM-2). Water Environment Research Foundation, Alexandria, VA

    Google Scholar 

  10. Ho KT, Burgess RM, Mount DR, Norberg-King TJ, Hockett JR (2007) Sediment toxicity identification evaluation (TIE) Phases I, II and III: guidance document (EPA/600/R-07/080). US Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  11. Ho KT, Burgess RM (2009) Marine sediment toxicity identification evaluations (TIEs): history, principles, methods, and future research. In: Kassim TA, Barcelo D (eds) Handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  12. Science Applications International Corporation (2003) Guide for planning and conducting sediment pore water toxicity identification evaluations (TIE) to determine causes of acute toxicity at Navy aquatic sites (User’s Guide UG-2052-ENV). Prepared for Naval Facilities Engineering Service Center, Port Hueneme, CA

    Google Scholar 

  13. Hawthorne SB, Miller DJ, Burford MD, Langenfeld JJ, Eckert-Tilotta S, Louie PK (1993) Factors controlling quantitative supercritical fluid extraction of environmental samples. J Chromatogr 642:301–317

    Article  CAS  Google Scholar 

  14. Bjorklund E, Nilsson T, Bowadt S, Pilorz K, Mathiasson L, Hawthorne SB (2000) Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. J Biochem Biophys Methods 43:295–311

    Article  CAS  Google Scholar 

  15. Nilsson T, Sporring S, Bjorklund E (2003) Selective supercritical fluid extraction to estimate the fraction of PCB that is bioavailable to a benthic organism in a naturally contaminated sediment. Chemosphere 53:1049–1052

    Article  CAS  Google Scholar 

  16. Nilsson T, Bjorklund E (2005) Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larvae in a limnic sediment. Chemosphere 53:141–146

    Article  Google Scholar 

  17. Nilsson T, Hakkinen J, Larsson P, Bjorklund E (2006) Selective supercritical fluid extraction to identify aged sediment-bound PCBs available for uptake by eel. Environ Pollut 140:87–94

    Article  CAS  Google Scholar 

  18. Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34:4103–4110

    Article  CAS  Google Scholar 

  19. Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35:4577–4583

    Article  CAS  Google Scholar 

  20. Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufacturing gas plant soils and sediments with chemical and biological tests: 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36:4795–4803

    Article  CAS  Google Scholar 

  21. Hawthorne SB, Lanno R, Kreitinger JP (2005) Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. Environ Toxicol Chem 24:1893–1895

    Article  CAS  Google Scholar 

  22. Burgess RM, Ho KT, Biales AD, Brack W (2011) Recent developments in whole sediment toxicity identification evaluations (TIEs): innovations in manipulations and endpoints. In: Brack W (ed) Effect directed analysis of complex environmental contamination: the handbook of environmental chemistry. Springer, Berlin.

    Google Scholar 

  23. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) An overview of toxicant identification in sediments and dredged materials. Mar Pollut Bull 44:286–293

    Article  CAS  Google Scholar 

  24. Nimmo DR (1985) Pesticides. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing, New York, NY

    Google Scholar 

  25. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706

    Article  CAS  Google Scholar 

  26. Amweg EL, Weston DP (2007) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: 1. Piperonyl butoxide addition. Environ Toxicol Chem 26:2389–2396

    Article  CAS  Google Scholar 

  27. Phillips BM, Anderson BS, Hunt JW, Nicely PA, Kosaka RA, Tjeerdema RS, de Vlaming V, Richard N (2004) In situ water and sediment toxicity in an agricultural watershed. Environ Toxicol Chem 23:435–442

    Article  CAS  Google Scholar 

  28. Phillips BM, Anderson BS, Hunt JW, Huntley SA, Tjeerdema RS, Kapellas N, Worcester K (2006) Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environ Toxicol Chem 25:1671–1676

    Article  CAS  Google Scholar 

  29. Amdour MO, Doull J, Klassen CD (1991) Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  30. US Geological Survey (1999) The quality of our nation’s waters: nutrients and pesticides (Circular 1225). US Geological Survey, Reston, VA

    Google Scholar 

  31. Hyne RV, Pablo F, Aistrope M, Leonard AW, Ahmad N (2004) Comparison of time-integrated pesticide concentrations determined from field-deployed passive samplers with daily river-water extractions. Environ Toxicol Chem 23:2090–2098

    Article  CAS  Google Scholar 

  32. Kreuger J, Peterson M, Lundgren E (1999) Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in southern Sweden. Bull Environ Contam Toxicol 62:55–62

    Article  CAS  Google Scholar 

  33. Kronvang B, Laubel A, Larsen SE, Friberg N (2003) Pesticides and heavy metals in Danish streambed sediment. Hydrobiologia 494:93–101

    Article  CAS  Google Scholar 

  34. Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environ Pollut 141:402–408

    Article  CAS  Google Scholar 

  35. Anderson BS, Phillips BM, Hunt JW, Worcester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria River watershed, California, USA. Environ Toxicol Chem 25:1160–1170

    Article  CAS  Google Scholar 

  36. Phillips BM, Anderson BS, Hunt JW, Tjeerdema RS, Carpio-Obeso M, Connor V (2007) Causes of water toxicity to Hyaella azteca in the New River, California, USA. Environ Toxicol Chem 26:1074–1079

    Article  CAS  Google Scholar 

  37. Holmes RW, Anderson BS, Phillips BM, Hunt JW, Crane DB, Mekebri A, Connor V (2008) Statewide investigation of the role of pyrethroid pesticides in sediment toxicity in California’s urban waterways. Environ Sci Technol 42:7003–7009

    Article  CAS  Google Scholar 

  38. Trimble AJ, Weston DP, Belden JB, Lydy MJ (2009) Identification and evaluation of pyrethroid insecticide mixtures in urban sediments. Environ Toxicol Chem 28:1687–1695

    Article  CAS  Google Scholar 

  39. Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 110:149–155

    Article  Google Scholar 

  40. Ankley GT, Dierkes JR, Jenson DA, Peterson GS (1991) Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicol Environ Saf 21:266–274

    Article  CAS  Google Scholar 

  41. Bailey HC, Digiorgio C, Kroll K, Miller JL, Hinton DE, Starrett G (1996) Development of procedures for identifying pesticide toxicity in ambient waters: carbofuran, diazinon, chlorphyrifos. Environ Toxicol Chem 15:837–845

    Article  CAS  Google Scholar 

  42. Amweg EL, Weston DP, Johnson CS, You J, Lydy MJ (2006) Effect of piperonyl butoxide on permethrin toxicity in the amphipod Hyalella azteca. Environ Toxicol Chem 25:1817–1825

    Article  CAS  Google Scholar 

  43. Anderson BS, Phillips BM, Hunt JW, Voorhees J, Clark S, Mekebri A, Crane D, Tjeerdema RS (2008) Recent advances in sediment toxicity identification evaluations emphasizing pyrethroid pesticides. In: Gan J (ed) Synthethic pyrethroids: occurrence and behavior in aquatic environments. American Chemical Society, Washington, DC

    Google Scholar 

  44. Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27:953–962

    Article  CAS  Google Scholar 

  45. Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock B (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York

    Google Scholar 

  46. Wheelock CE, Miller JL, Miller MJ, Gee SJ, Shan G, Hammock B (2004) Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activity. Environ Toxicol Chem 23:2699–2708

    Article  CAS  Google Scholar 

  47. Wheelock CE, Miller JL, Miller MJ, Phillips BM, Huntley SA, Gee SJ, Tjeerdema RS, Hammock BD (2006) Use of carboxylesterase activity to remove pyrethroid-associated toxicity to Ceriodaphia dubia and Hyalella azteca in toxicity identification evaluations. Environ Toxicol Chem 25:973–984

    Article  CAS  Google Scholar 

  48. Weston DP, Amweg EL (2007) Whole-sediment toxicity identification evaluation tools for pyrethorid insecticides: II. Esterase addition. Environ Toxicol Chem 26:2397–2404

    Article  CAS  Google Scholar 

  49. Gupta RC, Dettbarn WD (1993) Role of carboxylesterases in the prevention and potentiation of N-methylcarbamate toxicity. Chem Biol Interact 87:285–303

    Article  Google Scholar 

  50. Weston DP, Jackson CJ (2009) Use of engineered enzymes to identify organophosphate and pyrethroid-related toxicity in toxicity identification evaluations. Environ Sci Technol 43:5514–5520

    Article  CAS  Google Scholar 

  51. Lydy MJ, Belden JB, Ternes MA (1999) Effects of temperature on the toxicity of m-parathion, chloropyrifos and pentachlobenzene to Chironomus tentans. Arch Environ Contam Toxicol 37:542–547

    Article  CAS  Google Scholar 

  52. Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058

    Article  CAS  Google Scholar 

  53. Cairns J Jr, Heath AG, Parker BC (1975) The effects of temperature upon the toxicity of chemicals to aquatic systems. Hydrobiologia 47:135–171

    Article  CAS  Google Scholar 

  54. Enan O, Gordon HT (1965) Temperature effects on toxicity of synergized carbamate insecticides on house flies. J Econ Entomol 58:513–516

    CAS  Google Scholar 

  55. Sparks TC, Shour MH, Wellemeyer EG (1982) Temperature-toxicity relationships of pyrethroids on three Lepidopterans. J Econ Entomol 75:643–646

    CAS  Google Scholar 

  56. Brown MA (1987) Temperature-dependent pyrethroid resistance in a pyrethroid-selected colony of Heliothis virescens. J Econ Entomol 80:330–332

    CAS  Google Scholar 

  57. Weston DP, You J, Harwood AD, Lydy MJ (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insectides: III. Temperature manipulation. Environ Toxicol Chem 28:173–180

    Article  CAS  Google Scholar 

  58. Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065

    Article  CAS  Google Scholar 

  59. Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733

    Article  CAS  Google Scholar 

  60. Rose J, Holbech H, Lindholst C, Norum U, Povlsen A, Korsgaard B, Bjerregaard P (2002) Vitellogenin induction by 17beta-estradiol and 17alpha-ethinylestradiol in male zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 131:531–539

    Article  Google Scholar 

  61. Snell TW, Brogdon SE, Morgan MB (2003) Gene expression profiling in ecotoxicology. Ecotoxicology 12:475–483

    Article  CAS  Google Scholar 

  62. Hamadeh HK, Bushel PR, Jayadev S, Martin K, DiSorbo O, Sieber S, Bennett L, Tennant R, Stoll R, Barrett JC, Blanchard K, Paules RS, Afshari CA (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67:219–231

    Article  CAS  Google Scholar 

  63. Apraiz I, Mi J, Cristobal S (2006) Identification of proteomic signatures of exposure to marine pollutants in mussels (Mytilus edulis). Mol Cell Proteomics 5:1274–1285

    Article  CAS  Google Scholar 

  64. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154

    Article  CAS  Google Scholar 

  65. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219

    Article  Google Scholar 

  66. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  Google Scholar 

  67. US Environmental Protection Agency (1994) Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods (EPA 600/R-94/025). US EPA, Office of Research and Development, Narragansett, RI

    Google Scholar 

  68. American Society for Testing and Materials (2007) Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates (E1367-03e1). ASTM International, West Conshohocken, PA

    Google Scholar 

  69. Pauwels M, Roosens N, Frerot H, Saumitou-Laprade P (2008) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Plant Biol 11:129–134

    Article  CAS  Google Scholar 

  70. Redmond MS, Scott KJ, Swartz RC, Jones JKP (1994) Preliminary culture and life cycle experiments with the benthic amphipod Amplisca abdita. Environ Toxicol Chem 13:1355–1365

    Google Scholar 

  71. Whitehead A, Crawford DL (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol 6:R13

    Article  Google Scholar 

  72. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci USA 103:5425–5430

    Article  CAS  Google Scholar 

  73. Williams LM, Oleksiak MF (2008) Signatures of selection in natural populations adapted to chronic pollution. BMC Evol Biol 8:282

    Article  Google Scholar 

  74. Nacci DE, Champlin D, Coiro L, McKinney R, Jayaraman S (2002) Predicting the occurrence of genetic adaptation to dioxinlike compounds in populations of the estuarine fish Fundulus heteroclitus. Environ Toxicol Chem 21:1525–1532

    CAS  Google Scholar 

  75. Luoma SN, Phillips DJS (1988) Distribution, variability, and impacts of trace elements in San Francisco Bay. Mar Pollut Bull 19:413–425

    Article  CAS  Google Scholar 

  76. Mount D, Heinis L, Highland T, Hockett JR, Hoff D, Jenson C, Norberg-King T (2009) Are PAHs the right metric for assessing toxicity related to oils, tars, creosote, and similar contaminants in sediments? Platform presentation. Annual meeting of the society of environmental toxicology and chemistry – North America, New Orleans, LA, USA

    Google Scholar 

  77. Brack W, Burgess RM (2011) Considerations for incorporating bioavailability in effect-directed analysis and Toxicity Identification Evaluation. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  78. Anderson BS, Phillips BM, Hunt JW, Clark SL, Voorhees JP, Tjeerdema RS, Castline J, Stewart M, Crane D, Mekebri A (2010) Evaluation of methods to determine causes of sediment toxicity in San Diego Bay, California, USA. Ecotoxicol Environ Saf 73:534–540

    Article  CAS  Google Scholar 

  79. Mehler WT, Maul JD, You J, Lydy MJ (2010) Identifying the causes of sediment-associated toxicity in the Illinois River complex using a sediment toxicity identification evaluation (TIE). Environ Toxicol Chem 29:158–167

    Article  CAS  Google Scholar 

  80. Perron MM, Burgess RM, Ho KT, Pelletier MC, Cantwell MG, Shine JP (2010) Bioavailability assessment of a contaminated field sediment from Patrick Bayou, Texas, USA: toxicity identification evaluation and equilibrium partitioning. Environ Toxicol Chem 29:742–750

    Article  CAS  Google Scholar 

  81. National Research Council (2001) Assessing the TMDL approach to water quality management. National Academy Press, Washington, DC

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the insightful technical reviews provided by David Katz, Monique Perron, Jonathan Serbst, and Wayne Munns on this manuscript. This is NHEERL-AED, Narragansett Contribution AED-10-028. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This report has been reviewed by the US EPAs Office of Research and Development National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgess, R.M., Ho, K.T., Biales, A.D., Brack, W. (2011). Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_2

Download citation

Publish with us

Policies and ethics