Skip to main content

Effect-Directed Analysis of Endocrine Disruptors in Aquatic Ecosystems

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

The topic of endocrine disruption in the aquatic environment is a clear example of a problem-driven research area. Field observations of endocrine abnormalities in wild life have prompted the growth of scientific attention and concern about the topic. Multiple studies have reported the presence of endocrine disrupting activities in various compartments of the aquatic environment, without, at the time, knowing the cause of the observations. The application of effect-directed analysis (EDA) has shown to be a valuable approach in investigating the nature of the compounds responsible for endocrine disrupting activities in environmental samples. Various research groups have applied EDA approaches and thereby successfully identified compounds responsible for endocrine disrupting effects. The research field of endocrine disruption is thus one of the research areas that has extensively experienced the benefits of EDA. This chapter describes the issue of endocrine disruption in the aquatic environment and discusses examples of the application of EDA for the identification of responsible compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fry DM, Toone CK (1981) DDT-induced feminization of gull embryos. Science 213:922–924

    CAS  Google Scholar 

  2. Fry DM (1995) Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect 103:165–171

    CAS  Google Scholar 

  3. Facemire CF, Gross TS, LJJr G (1995) Reproductive impairment in the Florida panther: nature or nurture? Environ Health Perspect 103:79–86

    CAS  Google Scholar 

  4. Palmer BD, Palmer SK (1995) Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and african clawed frog. Environ Health Perspect 103:19–25

    CAS  Google Scholar 

  5. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285

    CAS  Google Scholar 

  6. Colborn T, Vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CAS  Google Scholar 

  7. Fairley P, Colborn T, Myers JP (1996) Our stolen future: what pointers for industry? Chem Week 158:55–56

    Google Scholar 

  8. European Environment Agency. European workshop on the impact of endocrine disruptors on human health and wildlife, 2–4 December 1996, Weybridge, UK. Report of the Proceedings. Report EU 17549. European Commission DG XII, Copenhagen

    Google Scholar 

  9. Sharpe RM, Skakkebaek NE (1993) Are estrogens involved in falling sperm counts and disorders of the male reproductive-tract. Lancet 341:1392–1395

    CAS  Google Scholar 

  10. Wolff MS, Toniolo PG, Lee EW, Rivera M, Dubin N (1993) Blood-levels of organochlorine residues and risk of breast-cancer. J Natl Cancer Inst 85:648–652

    CAS  Google Scholar 

  11. Daston GP, Cook JC, Kavlock RJ (2003) Uncertainties for endocrine disrupters: our view on progress. Toxicol Sci 74:245–252

    CAS  Google Scholar 

  12. Safe SH (1995) Environmental and dietary estrogens and human health – is there a problem. Environ Health Perspect 103:346–351

    CAS  Google Scholar 

  13. Safe SH (2000) Endocrine disruptors and human health – is there a problem? An update. Environ Health Perspect 108:487–493

    CAS  Google Scholar 

  14. Colborn T, Dumanoski D, Peterson Myers J (1996) Our stolen future. Little, Brown and Company, Boston, MA

    Google Scholar 

  15. Carbone P, Giordano F, Nori F, Mantovani A, Taruscio D, Lauria L, Figa-Talamanca I (2006) Cryptorchidism and hypospadias in the Sicilian district of Ragusa and the use of pesticides. Reprod Toxicol 22:8–12

    CAS  Google Scholar 

  16. Harvey PW, Darbre P (2004) Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women? A review of evidence and call for further research. J Appl Toxicol 24:167–176

    CAS  Google Scholar 

  17. Hauser R, Chen ZY, Pothier L, Ryan L, Altshul L (2003) The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p, p '-DDE. Environ Health Perspect 111:1505–1511

    CAS  Google Scholar 

  18. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254–255:179–186

    Google Scholar 

  19. Meyer KJ, Reif JS, Veeramachaneni DNR, Luben TJ, Mosley BS, Nuckols JR (2006) Agricultural pesticide use and hypospadias in eastern Arkansas. Environ Health Perspect 114:1589–1595

    Google Scholar 

  20. Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW (2003) Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 111:1478–1484

    CAS  Google Scholar 

  21. Guillette LJ, Gunderson MP (2001) Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. Reproduction 122:857–864

    CAS  Google Scholar 

  22. Lundholm CD (1997) DDE-induced eggshell thinning in birds: effects of p, p'-DDE on the calcium and prostaglandin metabolism of the eggshell gland. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118:113–128

    CAS  Google Scholar 

  23. LJJr G, Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR (1994) Development abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 102:680–688

    Google Scholar 

  24. Bryan GW, Gibbs PE, Hummerstone LG, Burt GR (1986) The decline of the gastropod nucella lapillus around south west England: evidence for the effect of trbutyl tin from antifouling paints. J Mar Biol Assoc UK 66:611–640

    CAS  Google Scholar 

  25. Birchenough AC, Barnes N, Evans SM, Hinz H, Kronke I, Moss C (2002) A review and assessment of tributyltin contamination in the North Sea, based on surveys of butyltin tissue burdens and imposex/intersex in four species of neogastropods. Mar Pollut Bull 44:534–543

    CAS  Google Scholar 

  26. Allen Y, Matthiessen P, Scott AP, Haworth S, Feist S, Thain JE (1999) The extent of oestrogenic contamination in the UK estuarine and marine environments – further surveys of flounder. Sci Total Environ 233:5–20

    CAS  Google Scholar 

  27. Allen Y, Scott AP, Matthiessen P, Haworth S, Thain JE, Feist S (1999) Survey of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ Toxicol Chem 18:1791–1800

    CAS  Google Scholar 

  28. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    CAS  Google Scholar 

  29. Kirby MF, Allen YT, Dyer RA, Feist SW, Katsiadaki I, Matthiessen P, Scott AP, Smith A, Stentiford GD, Thain JE, Thomas KV, Tolhurst L, Waldock MJ (2004) Surveys of plasma vitellogenin and intersex in male flounder (Platichthys flesus) as measures of endocrine disruption by estrogenic contamination in United Kingdom estuaries: temporal trends, 1996 to 2001. Environ Toxicol Chem 23:748–758

    CAS  Google Scholar 

  30. Barnhoorn IEJ, Bornman MS, Pieterse GM, van Vuren JHJ (2004) Histological evidence of intersex in feral sharptooth catfish (Clarias gariepinus) from an estrogen-polluted water source in Gauteng, South Africa. Environ Toxicol 19:603–608

    CAS  Google Scholar 

  31. Bjerregaard LB, Korsgaard B, Bjerregaard P (2006) Intersex in wild roach (Rutilus rutilus) from Danish sewage effluent-receiving streams. Ecotoxicol Environ Saf 64:321–328

    CAS  Google Scholar 

  32. Sole M, Raldua D, Piferrer F, Barcelo D, Porte C (2003) Feminization of wild carp, Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system. Comp Biochem Physiol C Toxicol Pharmacol 136:145–156

    CAS  Google Scholar 

  33. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59:511–524

    CAS  Google Scholar 

  34. Harries JL, Sheahan DA, Jobling S, Matthiesen P, Neall P, Routledge EJ, Ryocroft R, Sumpter JP, Tylor T (1996) A survey of estrogenic activity in United Kingdom inland waters. Environ Toxicol Chem 15:1993–2002

    CAS  Google Scholar 

  35. Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103:173–178

    CAS  Google Scholar 

  36. Belfroid AC, van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci Total Environ 225:101–108

    CAS  Google Scholar 

  37. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    CAS  Google Scholar 

  38. Mills LJ, Chichester C (2005) Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci Total Environ 343:1–34

    CAS  Google Scholar 

  39. Tyler CR, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361

    CAS  Google Scholar 

  40. Sandberg K (2002) HRT and SERMs: the good, the bad... and the lovely? Trends Endocrinol Metab 13:317–318

    CAS  Google Scholar 

  41. Arcand-Hoy LD, Benson WH (1998) Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem 17:49–57

    CAS  Google Scholar 

  42. Menuet A, Pellegrini E, Anglade I, Blaise O, Laudet V, Kah O, Pakdel F (2002) Molecular characterization of three estrogen receptor forms in zebrafish: binding characteristics, transactivation properties, and tissue distributions. Biol Reprod 66:1881–1892

    CAS  Google Scholar 

  43. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    CAS  Google Scholar 

  44. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54:138–153

    CAS  Google Scholar 

  45. Chang H, Wan Y, Hu J (2009) Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ Sci Technol 43:7691–7698

    CAS  Google Scholar 

  46. Houtman CJ, Cenijn PH, Hamers T, Lamoree MH, Legler J, Murk AJ, Brouwer A (2004) Toxicological profiling of sediments using in vitro bioassays, with emphasis on endocrine disruption. Environ Toxicol Chem 23:32–40

    CAS  Google Scholar 

  47. Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van Der Burg B (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42:5814–5820

    Google Scholar 

  48. Weiss JM, Hamers T, Thomas KV, Van Der Linden S, Leonards PE, Lamoree MH (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394:1385–1397

    CAS  Google Scholar 

  49. Marshall E (1988) The drug of champions. Science 242:183–184

    CAS  Google Scholar 

  50. Houtman CJ, Sterk SS, van de Heijning MP, Brouwer A, Stephany RW, Van Der Burg B, Sonneveld E (2009) Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Anal Chim Acta 637:247–258

    CAS  Google Scholar 

  51. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    CAS  Google Scholar 

  52. Brinkmann A, Jenster G, Ris-Stalpers C, van der Korput H, Bruggenwirth H, Boehmer A, Trapman J (1996) Molecular basis of androgen insensitivity. Steroids 61:172–175

    CAS  Google Scholar 

  53. Thiblin I, Petersson A (2005) Pharmacoepidemiology of anabolic androgenic steroids: a review. Fundam Clin Pharmacol 19:27–44

    CAS  Google Scholar 

  54. Matthiessen P, Allen Y, Bamber S, Craft J, Hurst M, Hutchinson T, Feist S, Katsiadaki I, Kirby M, Robinson C, Scott S, Thain J, Thomas K (2002) The impact of oestrogenic and androgenic contamination on marine organisms in the United Kingdom – summary of the EDMAR programme. Mar Environ Res 54:645–649

    CAS  Google Scholar 

  55. Thomas KV, Hurst MR, Matthiessen P, McHugh M, Smith A, Waldock MJ (2002) An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries. Environ Toxicol Chem 21:1456–1461

    CAS  Google Scholar 

  56. Ankley G, Mihaich E, Stahl R, Tillitt D, Colborn T, McMaster S, Miller R, Bantle J, Campbell P, Denslow N, Dickerson R, Folmar L, Fry M, Giesy J, Gray LE, Guiney P, Hutchinson T, Kennedy S, Kramer V, LeBlanc G, Mayes M, Nimrod A, Patino R, Peterson R, Purdy R, Ringer R, Thomas P, Touart L, Van der Kraak G, Zacharewski T (1998) Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environ Toxicol Chem 17:68–87

    CAS  Google Scholar 

  57. Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jorgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179:1–12

    CAS  Google Scholar 

  58. Shore LS, Shemesh M (2003) Naturally produced steroid hormones and their release into the environment. Pure Appl Chem 75:1859–1871

    CAS  Google Scholar 

  59. Sumpter JP (2005) Endocrine disrupters in the aquatic environment: an overview. Acta Hydroch Hydrob 33:9–16

    CAS  Google Scholar 

  60. Schriks M. 2006. Novel in itro, ex vivo and in vivo assays elucidating the effects of endocrine disrupting compounds (EDCs) on thyroid hormone action. Wageningen Universiteit.

    Google Scholar 

  61. Suzuki G, Takigami H, Watanabe M, Takahashi S, Nose K, Asari M, Sakai S (2008) Identification of brominated and chlorinated phenols as potential thyroid-disrupting compounds in indoor dusts. Environ Sci Technol 42:1794–1800

    CAS  Google Scholar 

  62. Fenet H, Gomez E, Pillon A, Rosain D, Nicolas JC, Casellas C, Balaguer P (2003) Estrogenic activity in water and sediments of a French river: contribution of alkylphenols. Arch Environ Contam Toxicol 44:1–6

    CAS  Google Scholar 

  63. Hashimoto S, Horiuchi A, Yoshimoto T, Nakao M, Omura H, Kato Y, Tanaka H, Kannan K, Giesy JP (2005) Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. Arch Environ Contam Toxicol 48:209–216

    CAS  Google Scholar 

  64. Klamer HJC, Leonards PEG, Lamoree MH, Villerius LA, Akerman JE, Bakker JF (2005) A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58:1579–1587

    CAS  Google Scholar 

  65. Koh CH, Khim JS, Villeneuve DL, Kannan K, Giesy JP (2002) Analysis of trace organic contaminants in sediment, pore water, and water samples from Onsan Bay, Korea: instrumental analysis and in vitro gene expression assay. Environ Toxicol Chem 21:1796–1803

    CAS  Google Scholar 

  66. Vondrácek J, Machala M, Minksová K, Bláha M, Murk AJ, Kozubík A, Hofmanová J, Hilscherová K, Ulrich R, Ciganek M, Neca J, Svrcková D, Holoubek I (2001) Monitoring sediments contaminated predominantly with polyaromatic hydrocarbons by chemical and in vitro bioassay techniques. Environ Toxicol Chem 20:1499–1506

    Google Scholar 

  67. Zacharewski TR (1997) In vitro bioassays for assessing estrogenic substances. Environ Sci Technol 31:613–623

    CAS  Google Scholar 

  68. Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    CAS  Google Scholar 

  69. Gutendorf B, Westendorf J (2001) Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166:79–89

    CAS  Google Scholar 

  70. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    CAS  Google Scholar 

  71. Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66

    CAS  Google Scholar 

  72. Balaam JL, Thomas KV (2007) Bioanalytical characterisation of estrogen and arylhydrocarbon receptor agonists in transplanted blue mussels (Mytilus edulis): proof of concept. J Environ Monit 9:419–423

    CAS  Google Scholar 

  73. Legler J, Leonards P, Spenkelink A, Murk AJ (2003) In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity. Ecotoxicology 12:239–249

    CAS  Google Scholar 

  74. Thomas KV, Hurst MR, Matthiesen P, Waldock M (2001) Characterization of estrogenic compounds in water samples collected from United Kingdom estuaries. Environ Toxicol Chem 20:2165–2170

    CAS  Google Scholar 

  75. Thomas KV, Balaam J, Hurst MR, Thain JE (2004) Identification of in vitro estrogen and androgen receptor agonists in North Sea offshore produced water discharges. Environ Toxicol Chem 23:1156–1163

    CAS  Google Scholar 

  76. Houtman CJ, Booij P, van der Valk KM, van Bodegom PM, van den Ende F, Gerritsen AA, Lamoree MH, Legler J, Brouwer A (2007) Biomonitoring of estrogenic exposure and identification of responsible compounds in bream from Dutch surface waters. Environ Toxicol Chem 26:898–907

    CAS  Google Scholar 

  77. Yuan X, Forman BM (2005) Detection of designer steroids. Nucl Recept Signal 3:e002

    Google Scholar 

  78. Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339

    CAS  Google Scholar 

  79. Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    CAS  Google Scholar 

  80. Sonneveld E, Riteco JA, Jansen HJ, Pieterse B, Brouwer A, Schoonen WG, van der BB (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89:173–187

    CAS  Google Scholar 

  81. Tollefsen KE, Harman C, Smith A, Thomas KV (2007) Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Mar Pollut Bull 54:277–283

    CAS  Google Scholar 

  82. Quaedackers ME, Van Den Brink CE, Wissink S, Schreurs RH, Gustafsson JA, Van Der Saag PT, Van Der Burg BB (2001) 4-hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. Endocrinology 142:1156–1166

    CAS  Google Scholar 

  83. Scippo ML, Argiris C, Van De Weerdt C, Muller M, Willemsen P, Martial J, Maghuin-Rogister G (2004) Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal Bioanal Chem 378:664–669

    CAS  Google Scholar 

  84. Viswanath G, Halder S, Divya G, Majumder CB, Roy P (2008) Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay. Mol Cell Endocrinol 295:1–9

    CAS  Google Scholar 

  85. Vonier PM, Crain DA, McLachlan JA, Guillette LJ Jr, Arnold SF (1996) Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 104:1318–1322

    CAS  Google Scholar 

  86. Klotz DM, Ladlie BL, Vonier PM, McLachlan JA, Arnold SF (1997) o, p'-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol Cell Endocrinol 129:63–71

    CAS  Google Scholar 

  87. Molina-Molina JM, Hillenweck A, Jouanin I, Zalko D, Cravedi JP, Fernandez MF, Pillon A, Nicolas JC, Olea N, Balaguer P (2006) Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol Appl Pharmacol 216:44–54

    CAS  Google Scholar 

  88. Schoonen WG, de Ries RJ, Joosten JW, Mathijssen-Mommers GJ, Kloosterboer HJ (1998) Development of a high-throughput in vitro bioassay to assess potencies of progestagenic compounds using chinese hamster ovary cells stably transfected with the human progesterone receptor and a luciferase reporter system. Anal Biochem 261:222–224

    CAS  Google Scholar 

  89. Willemsen P, Scippo ML, Kausel G, Figueroa J, Maghuin-Rogister G, Martial JA, Muller M (2004) Use of reporter cell lines for detection of endocrine-disrupter activity. Anal Bioanal Chem 378:655–663

    CAS  Google Scholar 

  90. Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92:157–173

    CAS  Google Scholar 

  91. Ishihara A, Sawatsubashi S, Yamauchi K (2003) Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol 199:105–117

    CAS  Google Scholar 

  92. Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem-Biol Interact 88:7–21

    CAS  Google Scholar 

  93. Morgado I, Hamers T, Van der Ven L, Power DM (2007) Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere 69:155–163

    CAS  Google Scholar 

  94. Somack R, Andrea TA, Jorgensen EC (1982) Thyroid hormone binding to human serum prealbumin and rat liver nuclear receptor: kinetics, contribution of the hormone phenolic hydroxyl group, and accommodation of hormone side-chain bulk. Biochemistry 21:163–170

    CAS  Google Scholar 

  95. Suzuki G, Takigami H, Nose K, Takahashi S, Asari M, Sakai S (2007) Dioxin-like and transthyretin-binding compounds in indoor dusts collected from Japan: average daily dose and possible implications for children. Environ Sci Technol 41:1487–1493

    CAS  Google Scholar 

  96. Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW (2004) Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11:1719–1728

    CAS  Google Scholar 

  97. Marchesini GR, Meulenberg E, Haasnoot W, Mizuguchi M, Irths H (2006) Biosensor recognition of thyroid-disrupting chemicals using transport proteins. Anal Chem 78:1107–1114

    CAS  Google Scholar 

  98. Meerts IA, van Zanden JJ, Luijks EA, Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A (2000) Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 56:95–104

    CAS  Google Scholar 

  99. Mount DI, Anderson-Carnahan L (1988) Methods for aquatic toxicity identification evaluation, phase I. Toxicity characterization procedures. EPA/600/3-88/034. EPA, Deluth, MN

    Google Scholar 

  100. Boxall ABA, Maltby L (1995) The characterization and toxicity of sediment contaminated with road runoff. Water Res 29:2043–2050

    CAS  Google Scholar 

  101. Brack W, Paschke A, Segner H, Wennrich R, Schüürmann G (2000) Urease inhibition: a tool for toxicity identification in sediment elutriates. Chemosphere 40:829–834

    CAS  Google Scholar 

  102. Casellas M, Fernandez P, Bayona JM, Solanas AM (1995) Bioassay-directed chemical analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain). Chemosphere 30:725–740

    CAS  Google Scholar 

  103. Deanovic L, Connor VM, Knight AW, Maier KW (1999) The use of bioassays and Toxicity Identification Evaluation (TIE) procedures to assess recovery and effectiveness of remedial activities in a mine drainage-impacted stream system. Arch Environ Contam Toxicol 36:21–27

    CAS  Google Scholar 

  104. Gupta G, Karuppiah M (1996) Toxicity identification of Pocomoke river pore water. Chemosphere 33:939–960

    CAS  Google Scholar 

  105. Ho KT, Quinn JG (2002) Bioassay-directed fractionation of organic contaminants in an estuarine sediment using the new mutagenic bioassay, Mutatox™. Environ Toxicol Chem 12:823–830

    Google Scholar 

  106. Reineke N, Bester K, Hühnerfuss H, Jastorff B, Weigel S (2002) Bioassay-directed chemical analysis of River Elbe surface water including large volume extractions and high performance fractionation. Chemosphere 47:717–723

    CAS  Google Scholar 

  107. Thomas KV, Benstead RE, Thain JE, Waldock MJ (1999) Toxicity characterization of organic contaminants in industrialized UK estuaries and coastal waters. Mar Pollut Bull 38:925–932

    CAS  Google Scholar 

  108. Houtman CJ, Van Oostveen AM, Brouwer A, Lamoree MH, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    CAS  Google Scholar 

  109. Houtman CJ, Booij P, Jover E, del Pascual RD, Swart K, Van VM, Vreuls R, Legler J, Brouwer A, Lamoree MH (2006) Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere 65:2244–2252

    CAS  Google Scholar 

  110. Loewe S, Muischnek H (1926) Über Kombinationswirkungen. 1.Mitteilung: Hilfsmittel der Fragestellung. Naunyn-Schmiedelbergs Arch Exp Pathol Pharmakol 114:313–326

    CAS  Google Scholar 

  111. Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Prediction and assessment of the effects of mixtures of four xenoestrogens. Environ Health Perspect 108:983–987

    CAS  Google Scholar 

  112. Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110:917–921

    CAS  Google Scholar 

  113. Silva E, Rajapakse N, Kortenkamp A (2002) Something from "Nothing"-Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756

    CAS  Google Scholar 

  114. Houtman CJ, Van Houten YK, Leonards PE, Brouwer A, Lamoree MH, Legler J (2006) Biological validation of a sample preparation method for ER-CALUX bioanalysis of estrogenic activity in sediment using mixtures of xeno-estrogens. Environ Sci Technol 40:2455–2461

    CAS  Google Scholar 

  115. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565

    CAS  Google Scholar 

  116. Thomas KV, Balaam J, Hurst M, Nedyalkova Z, Mekenyan O (2004) Potency and characterization of estrogen-receptor agonists in united kingdom estuarine sediments. Environ Toxicol Chem 23:471–479

    CAS  Google Scholar 

  117. Cespedes R, Lacorte S, Raldua D, Ginebreda A, Barcelo D, Pina B (2005) Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere 61:1710–1719

    CAS  Google Scholar 

  118. Quiros L, Cespedes R, Lacorte S, Viana P, Raldua D, Barcelo D, Pina B (2005) Detection and evaluation of endocrine-disruption activity in water samples from Portuguese rivers. Environ Toxicol Chem 24:389–395

    CAS  Google Scholar 

  119. Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbuhler A, Marazuela MD, Peter A, Schonenberger R, Vogeli AC, Suter MJ, Eggen RI (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378:688–696

    CAS  Google Scholar 

  120. Balaam JL, Chan-Man Y, Roberts PH, Thomas KV (2009) Identification of nonregulated pollutants in North sea-produced water discharges. Environ Toxicol Chem 28:1159–1167

    CAS  Google Scholar 

  121. Thomas KV, Langford K, Petersen K, Smith AJ, Tollefsen KE (2009) Effect-directed identification of naphthenic acids as important in vitro xeno-estrogens and anti-androgens in North sea offshore produced water discharges. Environ Sci Technol 43:8066–8071

    CAS  Google Scholar 

  122. Legler J, Jonas A, Lahr J, Vethaak AD, Brouwer A, Murk AJ (2002) Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-CALUX reporter gene assay. Environ Toxicol Chem 21:473–479

    CAS  Google Scholar 

  123. Gibson R, Tyler CR, Hill EM (2005) Analytical methodology for the identification of estrogenic contaminants in fish bile. J Chromatogr A 1066:33–40

    CAS  Google Scholar 

  124. Gibson R, Smith MD, Spary CJ, Tyler CR, Hill EM (2005) Mixtures of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents. Environ Sci Technol 39:2461–2471

    CAS  Google Scholar 

  125. Lee LS, Strock TJ, Sarmah AK, Rao PSC (2003) Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment. Environ Sci Technol 37:4098–4105

    CAS  Google Scholar 

  126. Hilscherova K, Kannan K, Holoubek I, Giesy JP (2002) Characterization of estrogenic activity of riverine sediments from the Czech Republic. Arch Environ Contam Toxicol 43:175–185

    CAS  Google Scholar 

  127. Legler J, Dennekamp M, Vethaak AD, Brouwer A, Koeman JH, van der Burg B, Murk AJ (2002) Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci Total Environ 293:69–83

    CAS  Google Scholar 

  128. Khim JS, Villeneuve DL, Kannan K, Koh CH, Giesy JP (1999) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, korea. 2. in vitro gene expression assays. Environ Sci Technol 33:4206–4211

    CAS  Google Scholar 

  129. Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23:945–952

    CAS  Google Scholar 

  130. Schlenk D, Sapozhnikova Y, Irwin MA, Xie LT, Hwang W, Reddy S, Brownawell BJ, Armstrong J, Kelly M, Montagne DE, Kolodziej EP, Sedlak D, Snyder S (2005) In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. Environ Toxicol Chem 24:2820–2826

    CAS  Google Scholar 

  131. Matthiessen P, Arnold D, Johnson AC, Pepper TJ, Pottinger TG, Pulman KG (2006) Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Sci Total Environ 367:616–630

    CAS  Google Scholar 

  132. Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, Meyer HHD (2002) Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473:27–37

    CAS  Google Scholar 

  133. Cespedes R, Petrovic M, Raldua D, Saura U, Pina B, Lacorte S, Viana P, Barcelo D (2004) Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC-ESI-MS. Anal Bioanal Chem 378:697–708

    CAS  Google Scholar 

  134. Sumpter JP, Johnson AC (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332

    CAS  Google Scholar 

  135. Urbatzka R, van Cauwenberge A, Maggioni S, Vigano L, Mandich A, Benfenati E, Lutz I, Kloas W (2007) Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere 67:1080–1087

    CAS  Google Scholar 

  136. Schriks M, van Leerdam JA, Van der Linden SC, Van Der Burg B, van Wezel AP, De Voogt P (2010) High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in The Netherlands. Environ Sci Technol 44:4766–4774

    CAS  Google Scholar 

  137. Chang H, Wu S, Hu J, Asami M, Kunikane S (2008) Trace analysis of androgens and progestogens in environmental waters by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1195:44–51

    CAS  Google Scholar 

  138. Jugan ML, Oziol L, Bimbot M, Huteau V, Tamisier-Karolak S, Blondeau JP, Lqvi Y (2009) In vitro assessment of thyroid and estrogenic endocrine disruptors in wastewater treatment plants, rivers and drinking water supplies in the greater Paris area (France). Sci Total Environ 407:3579–3587

    CAS  Google Scholar 

  139. Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, de Voogt P, Murk AJ, van der Burg B (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corine J. Houtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houtman, C.J., Legler, J., Thomas, K. (2011). Effect-Directed Analysis of Endocrine Disruptors in Aquatic Ecosystems. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_10

Download citation

Publish with us

Policies and ethics