Skip to main content

A Hybrid MoM/UTD Method for the Analysis of a Monopole Antenna in an Aperture

  • Chapter
  • First Online:
  • 1497 Accesses

Abstract

Automotive antennas are usually realized as conformal antennas that are placed on the car glazing. Therefore they reside in the apertures of the metallic car body. In a simplified representation the passenger cabin is an absorbing cavity which features one or more apertures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Bluck, S.P. Walker, High-order discrete helmholtz decompositions for the electric field integral equation. IEEE Trans. Antennas Propag. 55, 1338–1347 (2007)

    Article  MathSciNet  Google Scholar 

  2. C.M. Butler, Y. Rahmat-Samii, R. Mittra, Electromagnetic penetration through apertures in conducting surfaces. IEEE Trans. Antennas Propag. 26, 82–93 (1978)

    Article  Google Scholar 

  3. C.M. Butler, K.R. Umashankar, Electromagnetic excitation of a wire through an aperture-perforated conducting screen. IEEE Trans. Antennas Propag. 24, 456–462 (1976)

    Article  Google Scholar 

  4. V. Daniele, M. Gilli, S. Pignari, EMC prediction model of a single wire transmission line crossing a circular aperture in a planar screen. IEEE Trans. Electromagn. Compat. 38, 117–126 (1996)

    Article  Google Scholar 

  5. EMCoS Consulting and Software: EMCStudio v4.0 (2008), http://www.emcos.com

  6. R.F. Harrington, Time-Harmonic Electromagnetic Fields. (McGraw-Hill, New York, 1961)

    Google Scholar 

  7. J.B. Keller, Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116–130 (1962)

    Article  Google Scholar 

  8. M. Kline, An asymptotic solution of Maxwell’s equations. Commun. Pure Appl. Math. 4, 225–262 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. R.G. Kouyoumjian, Asymptotic high-frequency methods. Proc. IEEE 53, 864–876 (1965)

    Google Scholar 

  10. R.G. Kouyoumjian, P.H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 1448–1461 (1974)

    Article  Google Scholar 

  11. R.G. Kouyoumjian, P.H. Pathak, The Dyadic Diffraction Coefficient for a Curved Edge. The Ohio State University Electroscience Laboratory (1974)

    Google Scholar 

  12. J. Lin, W.L. Curtis, M.C. Vincent, Electromagnetic coupling to a cable through apertures. IEEE Trans. Antennas Propag. 24, 198–203 (1976)

    Article  Google Scholar 

  13. S. Lindenmeier, P. Russer, Design of planar circuit structures with an efficient magnetostatic-field solver. IEEE Trans. Microw. Theory Tech. 45, 2468–2475 (1997)

    Article  Google Scholar 

  14. S. Makarov, MoM antenna simulations with matlab: RWG basis functions. IEEE Antennas Propag. Mag. 43, 100–107 (2001)

    Article  Google Scholar 

  15. R. Nevels, C. Shin, Lorenz, Lorentz, and the Gauge. IEEE Antennas Propag. Mag. 43, 70–71 (2001)

    Article  Google Scholar 

  16. J. Priestley, The History and Present State of Discoveries relating to Vision, Light, and Colours. (J. Johnson, London, 1772)

    Google Scholar 

  17. S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)

    Article  Google Scholar 

  18. P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering. (Artech House Publishers, London, 2006)

    Google Scholar 

  19. A. Sommerfeld, Mathematische theorie der diffraction. Math. Ann. 47, 317–374 (1896)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Sommerfeld, R.J. Nagem, M. Zampolli, G. Sandri, Mathematical Theory of Diffraction. (Birkhäuser, Boston, 2004)

    Google Scholar 

  21. C. Ullrich, K.F. Warnick, P. Russer, Radiation from a monopole antenna backed by an absorbing body using a hybrid MoM/UTD approach. In Proceedings of the International Symposium on Antennas and Propagation, IEEE (2008)

    Google Scholar 

  22. C. Ullrich, Efficiente Simulations methoden fūr die Optimierung von komplexen Fahceugantennensystemen. (Curillier, Gōttingen, 2009)

    Google Scholar 

  23. T. Wang, R.F. Harrington, J.R. Mautz, Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies. IEEE Trans. Antennas Propag. 38, 1805–1814 (1990)

    Article  Google Scholar 

  24. K.F. Warnick, D.V. Arnold, Electromagnetic green functions using differential forms. J. Electromagnet. Wave 10, 427–438 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullrich, C., Russer, P. (2011). A Hybrid MoM/UTD Method for the Analysis of a Monopole Antenna in an Aperture. In: Lindenmeier, S., Weigel, R. (eds) Electromagnetics and Network Theory and their Microwave Technology Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18375-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18375-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18374-4

  • Online ISBN: 978-3-642-18375-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics