Skip to main content

High Harmonic Generation from Aligned Molecules

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 100))

  • 644 Accesses

Abstract

The recent progress in the study of high-order harmonic generation (HHG) from aligned molecules at SIOM is reviewed. We identify the laser intensity dependence of HHG from aligned CO2 molecules. The modulation inversion of harmonic yield with respect to molecular alignment can be altered dramatically by fine tuning the intensity of driving laser pulse for harmonic generation. The angular distribution of harmonic intensities is measured, and the results can be modeled by employing the strong-field approximation including ground state depletion factor. For improving the alignment degree of molecules, we present an active control scheme – the rule of slope – to either enhance or suppress the molecular alignment by the first laser pulse. The underlying physics has been revealed both numerically and analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kienberger, E. Goulielmakis et al., Nature 427, 817 (2004)

    ADS  Google Scholar 

  2. P. Tzallas, D. Charalambidis et al., Nature 426, 267 (2003)

    ADS  Google Scholar 

  3. Y. Nabekawa, T. Shimizu et al., Phys. Rev. Lett. 96, 083901 (2006)

    ADS  Google Scholar 

  4. N.A. Papadogiannis, B. Witzel et al., Phys. Rev. Lett. 83, 4289 (1999)

    ADS  Google Scholar 

  5. G. Sansone, E. Benedetti et al., Science 314, 443 (2006)

    ADS  Google Scholar 

  6. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    ADS  Google Scholar 

  7. A. Zair, M. Holler et al., Phys. Rev. Lett. 100, 143902 (2008)

    ADS  Google Scholar 

  8. N. Hay, R. Velotta et al., J. Phys. B 35, 1051 (2002)

    ADS  Google Scholar 

  9. J. Itatani, D. Zeidler et al., Phys. Rev. Lett. 94, 123902 (2005)

    ADS  Google Scholar 

  10. H. Stapelfeld, T. Seideman, Rev. Modern Phys. 75, 543 (2003)

    ADS  Google Scholar 

  11. I.V. Litvinyuk, K.F. Lee et al., Phys. Rev. Lett. 90, 233003 (2003)

    ADS  Google Scholar 

  12. J. Itatani, J. Levesque et al., Nature 432, 867 (2004)

    ADS  Google Scholar 

  13. R.A. Bartels, T.C. Weinacht et al., Phys. Rev. Lett. 88, 013903 (2002)

    ADS  Google Scholar 

  14. V. Kalosha, M. Spanner et al., Phys. Rev. Lett. 88, 103901 (2002)

    ADS  Google Scholar 

  15. R. Velotta, N. Hay et al., Phys. Rev. Lett. 87, 183901 (2001)

    ADS  Google Scholar 

  16. P. Liu, P.F. Yu et al., Phys. Rev. A 78, 015802 (2008)

    ADS  Google Scholar 

  17. T. Kanai, S. Minemoto et al., Nature 435, 470 (2005)

    ADS  Google Scholar 

  18. C. Vozzi, F. Calegari et al., Phys. Rev. Lett. 95, 153902 (2005)

    ADS  Google Scholar 

  19. A.-T. Le, X.M. Tong et al., Phys. Rev. A 73, 041402 (2006)

    ADS  Google Scholar 

  20. E. Takahashi, Y. Nabekawa et al., Phys. Rev. A 61, 021802 (2002)

    ADS  Google Scholar 

  21. T. Popmintchev, M. Chen et al., PNAS 106, 10516 (2009)

    ADS  Google Scholar 

  22. M. Lewenstein, P. Balcou et al., Phys. Rev. A 49, 2117 (1994)

    ADS  Google Scholar 

  23. X.M. Tong, Z.X. Zhao et al., Phys. Rev. A 66, 033402 (2002)

    ADS  Google Scholar 

  24. T. Kanai, S. Minemoto et al., Phys. Rev. Lett. 98, 053002 (2007)

    ADS  Google Scholar 

  25. X.X. Zhou, X.M. Tong et al., Phys. Rev. A 72, 033412 (2005)

    ADS  Google Scholar 

  26. X.X. Zhou, X.M. Tong et al., Phys. Rev. A 71, 061801 (2005)

    ADS  Google Scholar 

  27. J.J. Larsen, K. Hald et al., Phys. Rev. Lett. 85, 2470 (2000)

    ADS  Google Scholar 

  28. K.F. Lee, D.M. Villeneuve et al., Phys. Rev. Lett. 97, 173001 (2006)

    ADS  Google Scholar 

  29. S.V. Simon, K. Vinod et al., Phys. Rev. Lett. 99, 143602 (2007)

    Google Scholar 

  30. M. Machholm, J. Chem. Phys. 115, 10724 (2001)

    ADS  Google Scholar 

  31. F. Rosca-Pruna, M.J.J. Vrakking, Phys. Rev. Lett. 87, 153902 (2001)

    ADS  Google Scholar 

  32. E. Hertz, A. Rouzée et al., Phys. Rev. A 75, 031403 (2007)

    ADS  Google Scholar 

  33. I.Sh. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)

    ADS  Google Scholar 

  34. M. Leibscher, I.Sh. Averbukh et al., Phys. Rev. Lett. 90, 213001 (2003)

    ADS  Google Scholar 

  35. M. Leibscher, I.Sh. Averbukh et al., Phys. Rev. A 69, 013402 (2004)

    ADS  Google Scholar 

  36. C.Z. Bisgaard, M.D. Poulsen et al., Phys. Rev. Lett. 92, 173004 (2004)

    ADS  Google Scholar 

  37. C.Z. Bisgaard, S.S. Viftrup et al., Phys. Rev. A 73, 053410 (2006)

    ADS  Google Scholar 

  38. K.F. Lee, I.V. Litvinyuk et al., J. Phys. B 37, L43 (2004)

    Google Scholar 

  39. M. Spanner, E.A. Shapiro et al., Phys. Rev. Lett. 92, 093001 (2004)

    ADS  Google Scholar 

  40. M. Renard, E. Hertz et al., Phys. Rev. A 72, 025401 (2005)

    ADS  Google Scholar 

  41. S. Fleischer, I.Sh. Averbukh et al., Phys. Rev. Lett. 99, 093002 (2007)

    ADS  Google Scholar 

  42. K.F. Lee, E.A. Shapiro et al., Phys. Rev. A 73, 033403 (2006)

    ADS  Google Scholar 

  43. P.W. Dooley, I.V. Litvinyuk et al., Phys. Rev. A 68, 023406 (2003)

    ADS  Google Scholar 

  44. K.J. Miller, J. Am. Chem. Soc. 112, 8543 (1990)

    Google Scholar 

  45. H. Hasegawa, Y. Ohshima, Phys. Rev. Lett. 101, 053002 (2008)

    ADS  Google Scholar 

  46. H. Hasegawa, Y. Ohshima, Proc. of SPIE, 7027, 70271F (2008)

    ADS  Google Scholar 

  47. V. Renard, M. Renard et al., Phys. Rev. A 70, 033420 (2004)

    ADS  Google Scholar 

  48. D. Meshulach, Y. Silberberg, Phys. Rev. A 60, 1287 (1999)

    ADS  Google Scholar 

  49. P. Wei, P. Liu et al., Phys. Rev. A 79, 053814 (2009)

    ADS  Google Scholar 

  50. Y. Li, P. Liu et al., Chem. Phys. Lett. 475, 183 (2009)

    ADS  Google Scholar 

  51. S. Zhao, P. Liu et al., Chem. Phys. Lett. 480, 67 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from National Natural Science Foundation (Grant Nos. 10734080, 60578049, 10523003 and 60978012), 973 National Basic Research Program of China (Grant No. 2006CB806000) and Shanghai Commission of Science and Technology (Grant Nos. 06DZ22015, 0652nm005 and 07pj14091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, R. et al. (2011). High Harmonic Generation from Aligned Molecules. In: Yamanouchi, K., Charalambidis, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science VII. Springer Series in Chemical Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18327-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18327-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18326-3

  • Online ISBN: 978-3-642-18327-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics