Skip to main content

Optically Probed Laser-Induced Field-Free Molecular Alignment

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 100))

  • 656 Accesses

Abstract

Molecular alignment induced by laser fields has been investigated in research laboratories for over two decades. It led to a better understanding of the fundamental processes at play in the interaction of strong laser fields with molecules, and also provided significant contributions to the fields of high harmonic generation, laser spectroscopy, and laser filamentation. In this chapter, we discuss molecular alignment produced under field-free conditions, as resulting from the interaction of a laser pulse of duration shorter than the rotational period of the molecule. The experimental results presented will be confined to the optically probed alignment of linear as well as asymmetric top molecules. Special care will be taken to describe and compare various optical methods that can be employed to characterize laser-induced molecular alignment. Promising applications of optically probed molecular alignment will be also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75(2), 543 (2003)

    ADS  Google Scholar 

  2. V. Renard, M. Renard, S. Guérin, Y.T. Pashayan, B. Lavorel, O. Faucher, H.R. Jauslin, Phys. Rev. Lett. 90(15), 153601 (2003)

    ADS  Google Scholar 

  3. J.J. Larsen, H. Sakai, C.P. Safvan, I. Wendt-Larsen, H. Stapelfeldt, J. Chem. Phys. 111(17), 7774 (1999)

    ADS  Google Scholar 

  4. P.W. Dooley, I.V. Litvinyuk, K.F. Lee, D.M. Rayner, M. Spanner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. A 68(2), 23406 (2003)

    ADS  Google Scholar 

  5. J.G. Underwood, M. Spanner, M.Y. Ivanov, J. Mottershead, B.J. Sussman, A. Stolow, Phys. Rev. Lett. 90(22), 223001 (2003)

    ADS  Google Scholar 

  6. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    MATH  Google Scholar 

  7. R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley-Interscience, New York, 1988)

    Google Scholar 

  8. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950)

    Google Scholar 

  9. M. Morgen, W. Price, L. Hunziker, P. Ludowise, M. Blackwell, Y. Chen, Chem. Phys. Lett. 209(1,2), 1 (1993)

    ADS  Google Scholar 

  10. M. Renard, E. Hertz, S. Guérin, H.R. Jauslin, B. Lavorel, O. Faucher, Phys. Rev. A 72(2), 025401 (2005)

    ADS  Google Scholar 

  11. F. Rosca-Pruna, M.J.J. Vrakking, J. Chem. Phys. 116(15), 6579 (2002)

    ADS  Google Scholar 

  12. P.W. Dooley, I.V. Litvinyuk, K.F. Lee, D.M. Rayner, M. Spanner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. A 68(2), 23406 (2003)

    ADS  Google Scholar 

  13. V. Renard, M. Renard, A. Rouzée, S. Guérin, H.R. Jauslin, B. Lavorel, O. Faucher, Phys. Rev. A 70, 033420 (2004)

    ADS  Google Scholar 

  14. S. Zamith, Z. Ansari, F. Lépine, M.J.J. Vrakking, Opt. Lett. 30(17), 2326 (2005)

    ADS  Google Scholar 

  15. D.W. Broege, R.N. Coffee, P.H. Bucksbaum, Phys. Rev. A 78(3), 035401 (2008)

    ADS  Google Scholar 

  16. J.P. Cryan, P.H. Bucksbaum, R.N. Coffee, Phys. Rev. A 80(6), 063412 (2009)

    ADS  Google Scholar 

  17. A. Rouzée, S. Guérin, V. Boudon, B. Lavorel, O. Faucher, Phys. Rev. A 73(3), 033418 (2006)

    ADS  Google Scholar 

  18. B.J. Sussman, J.G. Underwood, R. Lausten, M. Ivanov, A. Stolow, Phys. Rev. A 73(5), 53403 (2006)

    ADS  Google Scholar 

  19. P.N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, New York, 1990)

    Google Scholar 

  20. J.R. Lalanne, A. Ducasse, S. Kielich, Laser-Molecule Interaction: Laser Physics and Molecular Nonlinear Optics (Wiley, New York, 1996)

    Google Scholar 

  21. C. Minhaeng, D. Mei, N.F. Scherer, G.R. Fleming, S. Mukamel, J. Chem. Phys. 99(4), 2410 (1993)

    ADS  Google Scholar 

  22. B. Lavorel, O. Faucher, M. Morgen, R. Chaux, J. Raman Spectrosc. 31(1-2), 77 (2000)

    ADS  Google Scholar 

  23. T. Seideman, J. Chem. Phys. 115(13), 5965 (2001)

    ADS  Google Scholar 

  24. P.M. Felker, A.H. Zewail, in Femtosecond Chemistry, vol. 1, ed. by J. Manz, L. Waste (VCH, Weinheim, New York, 1995), p. 193

    Google Scholar 

  25. E. Péronne, M.D. Poulsen, C.Z. Bisgaard, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 91(4), 043003 (2003)

    ADS  Google Scholar 

  26. M.D. Poulsen, E. Péronne, H. Stapelfeldt, C.Z. Bisgaard, S.S. Viftrup, E. Hamilton, T. Seideman, J. Chem. Phys. 121(2), 783 (2004)

    ADS  Google Scholar 

  27. K.F. Lee, D.M. Villeneuve, P.B. Corkum, S. Albert, G.U. Jonathan, Phys. Rev. Lett. 97(17), 173001 (2006)

    ADS  Google Scholar 

  28. A. Rouzée, S. Guérin, O. Faucher, B. Lavorel, Phys. Rev. A 77(4), 043412 (2008)

    ADS  Google Scholar 

  29. V. Loriot, R. Tehini, E. Hertz, B. Lavorel, O. Faucher, Phys. Rev. A 78(1), 013412 (2008)

    ADS  Google Scholar 

  30. M. Fujimoto, S. Aoshima, M. Hosoda, Y. Tsuchiya, Phys. Rev. A 64(3), 033813 (2001)

    ADS  Google Scholar 

  31. V. Loriot, E. Hertz, B. Lavorel, O. Faucher, J. Chem. Phys. 132(18), 184303 (2010)

    ADS  Google Scholar 

  32. V. Renard, O. Faucher, B. Lavorel, Opt. Lett. 30(1), 70 (2005)

    ADS  Google Scholar 

  33. J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 1996)

    Google Scholar 

  34. E. Hertz, D. Daems, S. Guérin, H.R. Jauslin, B. Lavorel, O. Faucher, Phys. Rev. A 76(4), 043423 (2007)

    ADS  Google Scholar 

  35. D. Daems, S. Guérin, E. Hertz, H.R. Jauslin, B. Lavorel, O. Faucher, Phys. Rev. Lett. 95(6), 063005 (2005)

    ADS  Google Scholar 

  36. V. Loriot, E. Hertz, A. Rouzée, B. Sinardet, B. Lavorel, O. Faucher, Opt. Lett. 31(19), 2897 (2006)

    ADS  Google Scholar 

  37. C.W. Siders, G. Rodriguez, J.L.W. Siders, F.G. Omenetto, A.J. Taylor, Phys. Rev. Lett. 87(26), 263002 (2001)

    ADS  Google Scholar 

  38. A. Talebpour, J. Yang, S.L. Chin, Optic. Comm. 163(1-3), 29 (1999)

    ADS  Google Scholar 

  39. J. Kasparian, R. Sauerbrey, S.L. Chin, Appl. Phys. B 71(6), 877 (2000)

    ADS  Google Scholar 

  40. V. Loriot, E. Hertz, B. Lavorel, O. Faucher, J. Phys. B 41, 015604 (2008)

    ADS  Google Scholar 

  41. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Opt. Express 17(16), 13429 (2009)

    ADS  Google Scholar 

  42. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Opt. Express 18(3), 3011 (2010)

    ADS  Google Scholar 

  43. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel,J.P. Wolf, Phys. Rev. Lett. 104(10), 103903 (2010)

    ADS  Google Scholar 

  44. W. Ettoumi, P. Béjot, Y. Petit, V. Loriot, E. Hertz, O. Faucher, B. Lavorel, J. Kasparian,J.P. Wolf, Phys. Rev. A 82(3), 039905 (2010)

    ADS  Google Scholar 

  45. S. Ramakrishna, T. Seideman, J. Chem. Phys. 124(3), 034101 (2006)

    ADS  Google Scholar 

  46. T. Vieillard, F. Chaussard, D. Sugny, B. Lavorel, O. Faucher, J. Raman Spectrosc. 39(6), 694 (2008)

    ADS  Google Scholar 

  47. A. Rouzée, V. Renard, S. Guérin, O. Faucher, B. Lavorel, Phys. Rev. A 75(1), 013419 (2007)

    ADS  Google Scholar 

  48. A. Rouzée, V. Renard, S. Guérin, O. Faucher, B. Lavorel, J. Raman Spectrosc. 38(8), 969 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

Thanks are due to present and former PhD students of our research group, M. Renard, V. Renard, A. Rouzée, V. Loriot, R. Tehini, and T. Vieillard for their contributions to the research presented here. We thank S. Guérin, D. Sugny, H. R. Jauslin, and V. Boudon for the theoretical support that our work has benefited. The authors are grateful to S. Couris for critical reading of the manuscript. This work has been supported by the CNRS, the Conseil Regional de Bourgogne, the ACI PHOTONIQUE, the ANR COMOC, the Marie Curie European Reintegration Grant MODISH of the 6th RTD FP, and the FASTQUAST ITN Program of the 7th RTD FP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Faucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faucher, O., Lavorel, B., Hertz, E., Chaussard, F. (2011). Optically Probed Laser-Induced Field-Free Molecular Alignment. In: Yamanouchi, K., Charalambidis, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science VII. Springer Series in Chemical Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18327-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18327-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18326-3

  • Online ISBN: 978-3-642-18327-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics