Skip to main content

High-Fidelity DNA Hybridization Using Programmable Molecular DNA Devices

  • Conference paper
DNA Computing and Molecular Programming (DNA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6518))

Included in the following conference series:

Abstract

The hybridization of complementary nucleic acid strands is the most basic of all reactions involving nucleic acids, but has a major limitation: the specificity of hybridization reactions depends critically on the lengths of the complementary pairs of strands and can drop to very low values for sufficiently long strands. This reduction in specificity occurs especially in the presence of noise in the form of other competing strands that have sequence segments identical to the target. This limits the scale and accuracy of biotechnology and nanotechnology applications which depend on hybridization reactions. Our paper develops techniques for ensuring specific high-fidelity DNA hybridization reactions for target strands of arbitrary length. Our protocol is executed autonomously, without external mediation and driven by a series of conversions of single stranded DNA into duplex DNA that help overcome kinetic energy traps, similar to DNA walkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherman, W., Seeman, N.: A Precisely Controlled DNA Biped Walking Device. Nano Letters 4, 1203–1207 (2004)

    Article  Google Scholar 

  2. Yin, P., Yan, H., Daniell, X., Turberfield, A., Reif, J.: A Unidirectional DNA Walker Moving Autonomously Along a Linear Track. Angewandte Chemie International Edition 116(37), 5014–5019 (2004)

    Article  Google Scholar 

  3. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme That Walks Processively and Autonomously along a One-Dimensional Track. Angewandte Chemie International Edition 44(28), 4355–4358 (2005)

    Article  Google Scholar 

  4. Dirks, R., Pierce, N.: Triggered Amplification by Hybridization Chain Reaction. Proceedings of the National Academy of Sciences of the United States of America 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  5. Turberfield, A., Mitchell, J., Yurke, B., Mills, A., Blakey, M., Simmel, F.: DNA Fuel for Free-Running Nanomachines. Physical Review Letters 90(11) (2003)

    Google Scholar 

  6. Yurke, B., Turberfield, A., Mills, A., Simmel, F., Neumann, J.: A DNA-fuelled Molecular Machine Made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  7. Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  8. Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular automata. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 399–416. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Phillips, A., Cardelli, L.: A Programming Language for Composable DNA Circuits. Journal of The Royal Society Interface 6(11), 419–436 (2009)

    Article  Google Scholar 

  10. Green, C., Tibbetts, C.: Reassociation Rate Limited Displacement of DNA Strands by Branch Migration. Nucleic Acids Research 9(8), 1905–1918 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalkrishnan, N., Chandran, H., Reif, J. (2011). High-Fidelity DNA Hybridization Using Programmable Molecular DNA Devices. In: Sakakibara, Y., Mi, Y. (eds) DNA Computing and Molecular Programming. DNA 2010. Lecture Notes in Computer Science, vol 6518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18305-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18305-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18304-1

  • Online ISBN: 978-3-642-18305-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics