Towards Domain-Based Sequence Design for DNA Strand Displacement Reactions

  • David Yu Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6518)


DNA strand displacement has been used to construct a variety of components, devices, and circuits. The sequences of involved nucleic acid molecules can greatly influence the kinetics and function of strand displacement reactions. To facilitate consideration of spurious reactions during the design process, one common strategy is to subdivide DNA strands into domains, continuous nucleic acid bases that can be abstracted to act as a unit in hybridization and dissociation. Here, considerations for domain-based sequence design are discussed, and heuristics are presented for the sequence design of domains. Based on these heuristics, a randomized algorithm is implemented for sequence design.


Reaction Network Domain Design Sequence Design Continuous Region Strand Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SantaLucia, J., Hicks, D.: Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)CrossRefGoogle Scholar
  2. 2.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: SIAM Rev. 49, 65 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zuker, M.: Nucleic Acids Res. 31, 3406 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 131, 17303 (2009)CrossRefGoogle Scholar
  5. 5.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Science 314, 1585 (2006)CrossRefGoogle Scholar
  6. 6.
    Hagiya, M., Yaegashi, S., Takahashi, K.: Nanotechnology: Science and Computation, pp. 293–308 (2006)Google Scholar
  7. 7.
    Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: J. Am. Chem. Soc. 129, 14875 (2007)CrossRefGoogle Scholar
  8. 8.
    Zhang, D.Y.: Cooperative DNA strand displacement for DNA quantitation, detection, and logic (submitted, 2010)Google Scholar
  9. 9.
    Xie, Z., Liu, S.J., Bleris, L., Benenson, Y.: Nuc. Acids Res. (2010, doi:10.1093/nar/gkq117)Google Scholar
  10. 10.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Science 318, 1121 (2007)CrossRefGoogle Scholar
  11. 11.
    Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I., Simmel, F.C.: Phys. Rev. Lett. 90, 118102 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 130, 13921 (2008)CrossRefGoogle Scholar
  13. 13.
    Zhang, D.Y., Winfree, E.: Nuc. Acid Res. (2010, pre-published online doi:10.1093/nar/gkq088)Google Scholar
  14. 14.
    Seelig, G., Yurke, B., Winfree, E.: J. Am. Chem. Soc. 128, 12211 (2006)CrossRefGoogle Scholar
  15. 15.
    Bois, J.S., Venkataraman, S., Choi, H.M.T., Spakowitz, A.J., Wang, Z.G., Pierce, N.A.: Nuc. Acid Res. 33, 4090 (2005)CrossRefGoogle Scholar
  16. 16.
    Green, S.J., Lubrich, D., Turberfield, A.J.: Biophysical Journal 91, 2966 (2006)CrossRefGoogle Scholar
  17. 17.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: Nature 406, 605 (2000)CrossRefGoogle Scholar
  18. 18.
    Dirks, R.M., Pierce, N.A.: Proc. Nat. Acad. Sci. 101, 15275 (2004)CrossRefGoogle Scholar
  19. 19.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Nature 451, 318 (2008)CrossRefGoogle Scholar
  20. 20.
    Omabegho, T., Sha, R., Seeman, N.C.: Science 324, 67 (2009)CrossRefGoogle Scholar
  21. 21.
    Gao, Y., Wolf, L.K., Georgiadis, R.M.: Nuc. Acids Res. 34, 3370 (2006)CrossRefGoogle Scholar
  22. 22.
    Sun, W., Mao, C., Liu, F., Seeman, N.C.: J. Mol. Biol. 282, 59 (1998)CrossRefGoogle Scholar
  23. 23.
    Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Nucleic Acids Res. 32, 1392 (2004)CrossRefGoogle Scholar
  24. 24.
    Seifferf, J., Huhle, A.: J. Biomol. Struct. Dyn. 25, 453 (2008)CrossRefGoogle Scholar
  25. 25.
    Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Nuc. Acids Res. 33, 903 (2005)CrossRefGoogle Scholar
  26. 26.
    Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Nuc. Acids Res. 33, 4951 (2005)CrossRefGoogle Scholar
  27. 27.
    Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Survey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 275–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Seeman, N.C.: J. Biomol. Struct. Dyn. 8, 573–581 (1990)CrossRefGoogle Scholar
  29. 29.
    Cao, S., Chen, S.: Nuc. Acids Res. 34, 2634 (2006)CrossRefGoogle Scholar
  30. 30.
    Xayaphoummine, A., Bucher, T., Isambert, H.: Nuc. Acids Res. 33, W605 (2005)CrossRefGoogle Scholar
  31. 31.
    Dirks, R.M., Pierce, N.A.: J. Comput. Chem. 25, 1295 (2004)CrossRefGoogle Scholar
  32. 32.
    Protozanova, E., Yakovchuk, P., Frank-Kamenetskii, M.D.: J. Mol. Biol. 342, 775 (2004)CrossRefGoogle Scholar
  33. 33.
    Pyshnyi, D.V., Ivanova, E.M.: Russian Chemical Bulletin 51, 1145 (2002)CrossRefGoogle Scholar
  34. 34.
    Vasiliskov, V.A., Prokopenko, D.V., Mirzabekov, A.D.: Nuc. Acid Res. 29, 2303 (2001)CrossRefGoogle Scholar
  35. 35.
    Pyshnyi, D.V., Ivanova, E.M.: Nucleosides, Nucleotides, and Nucleic Acids 23, 1057 (2004)CrossRefGoogle Scholar
  36. 36.
    Panyutin, I.G., Hsieh, P.: J. Mol. Biol. 230, 413 (1993)CrossRefGoogle Scholar
  37. 37.
    Sen, D., Gilbert, W.: Methods in enzymology 211, 191 (1992)CrossRefGoogle Scholar
  38. 38.
    Southern, E.M., Casegreen, S.C., Elder, J.K., Johnson, M., Mir, K.U., Wang, L., Williams, J.C.: Nuc. Acids Res. 22, 1368 (1994)CrossRefGoogle Scholar
  39. 39.
    Mir, K.U.: A restricted genetic alphabet for DNA computing. In: DNA Based Computers II. DIMACS, vol. 44, pp. 243–246 (1998)Google Scholar
  40. 40.
    Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Mao, C., Sun, W., Shen, Z., Seeman, N.C.: Nature 397, 144 (1999)CrossRefGoogle Scholar
  42. 42.
    Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., Lyamichev, V.I.: J. Mol. Bio. 297, 511 (2000)CrossRefGoogle Scholar
  43. 43.
    Yurke, B., Mills, A.P.: Genet. Prog. Evol. Mach. 4, 111 (2003)CrossRefGoogle Scholar
  44. 44.
    Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide. In: Barciszewski, J., Clark, B.F.C. (eds.) RNA Biochemistry and Biotechnology. NATO ASI Series. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  45. 45.
    Dimitrov, R.A., Zuker, M.: Biophys. J. 87, 215 (2004)CrossRefGoogle Scholar
  46. 46.
    Kim, J., White, K.S., Winfree, E.: Mol. Syst. Biol. 2, 68 (2006)CrossRefGoogle Scholar
  47. 47.
    Dittmer, W.U., Simmel, F.C.: Nano Lett. 4, 689 (2004)CrossRefGoogle Scholar
  48. 48.
    Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: J. Am. Chem. Soc. 127, 6914–6915 (2005)CrossRefGoogle Scholar
  49. 49.
    Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: J. Am. Chem. Soc. 128, 12693 (2006)CrossRefGoogle Scholar
  50. 50.
    Lund, K., Manzo, A., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N., Winfree, E., Yan, H.: Nature (in press, 2010)Google Scholar
  51. 51.
    Frank-Kamenetskii, M.D., Mirkin, S.M.: Annu. Rev. Biochem. 64, 65 (1995)CrossRefGoogle Scholar
  52. 52.
    Soloveichik, D., Seelig, G., Winfree, E.: Proc. Nat. Acad. Sci. (2010, pre-published online doi:10.1073/pnas.0909380107) Google Scholar
  53. 53.
    Phillips, A., Cardelli, L.: Journal of the Royal Society Interface 6, S419 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Yu Zhang
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations