Simple Evolution of Complex Crystal Species

  • Rebecca Schulman
  • Erik Winfree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6518)


Cairns-Smith has proposed that life began as structural patterns in clays that self-replicated during cycles of crystal growth and fragmentation. Complex, evolved crystal forms could then have catalyzed the formation of a more advanced genetic material. A crucial weakness of this theory is that it is unclear how complex crystals might arise through Darwinian selection. Here we investigate whether complex crystal patterns could evolve using a model system for crystal growth, DNA tile crystals, that is amenable to both theoretical and experimental inquiry. It was previously shown that in principle, the evolution of crystals assembled from a set of thousands of DNA tiles under very specific environmental conditions could produce arbitrarily complex patterns. Here we show that evolution driven only by the dearth of one monomer type could produce complex crystals from just 12 monomer types. The proposed mechanism of evolution is simple enough to test experimentally and is sufficiently general that it may apply to other DNA tile crystals or even to natural crystals, suggesting that complex crystals could evolve from simple starting materials because of relative differences in concentrations of the materials needed for growth.


Cellular Automaton Tile Type Complex Crystal Monomer Type Simple Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami, C.: Introduction to Artifical Life. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5, 2586–2592 (2005)CrossRefGoogle Scholar
  3. 3.
    Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences USA 106(15), 6054–6059 (2009)CrossRefGoogle Scholar
  4. 4.
    Bullard, T., Freudenthal, J., Avagyan, S., Kahr, B.: Test of Cairns-Smith’s crystals-as-genes hypothesis. Faraday Discussions 136, 231–245 (2007)CrossRefGoogle Scholar
  5. 5.
    Cairns-Smith, A.G.: The origin of life and the nature of the primitive gene. Journal of Theoretical Biology 10, 53–88 (1966)CrossRefGoogle Scholar
  6. 6.
    Cairns-Smith, A.G.: Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge (1982)Google Scholar
  7. 7.
    Cairns-Smith, A.G.: The chemistry of materials for artificial Darwinian systems. International Reviews in Physical Chemistry 7, 209–250 (1988)CrossRefGoogle Scholar
  8. 8.
    Cairns-Smith, A.G., Hartman, H.: Clay Minerals and the Origin of Life. Cambridge University Press, Cambridge (1986)Google Scholar
  9. 9.
    Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Letters 7(9), 2912–2919 (2007)Google Scholar
  10. 10.
    Chen, J., Reif, J.H. (eds.): DNA 9. LNCS, vol. 2943. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen and Reif [10], pp. 91–107Google Scholar
  12. 12.
    Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. Journal of Physical Chemistry 92, 6881–6891 (1988)CrossRefGoogle Scholar
  13. 13.
    Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)CrossRefGoogle Scholar
  14. 14.
    Griffith, S., Goldwater, D., Jacobson, J.M.: Self-replication from random parts. Nature 437, 636 (2005)CrossRefGoogle Scholar
  15. 15.
    Hariadi, R.F., Yurke, B.: Elongational-flow-induced scission of DNA nanotubes in laminar flow. Physical Review E 82(4), 046307 (2010), CrossRefGoogle Scholar
  16. 16.
    Klavins, E.: Universal self-replication using graph grammars. In: 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS 2004), pp. 198–204 (2004)Google Scholar
  17. 17.
    Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M., Weissmann, C.: Darwinian evolution of prions in cell culture. Science 327(5967), 869–872 (2010)CrossRefGoogle Scholar
  18. 18.
    Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science 323(5918), 1229–1232 (2009)CrossRefGoogle Scholar
  19. 19.
    Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121, 5437–5443 (1999)CrossRefGoogle Scholar
  20. 20.
    Markov, I.V.: Crystal Growth for Beginners. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  21. 21.
    Mills, D., Peterson, N., Spiegelman, S.: An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proceedings of the National Academy of Sciences USA 58, 217–224 (1967)CrossRefGoogle Scholar
  22. 22.
    Orgel, L.E., Crick, F.H.C.: Anticipating an RNA world. Some past speculations on the origin of life: Where are they today? FASEB Journal 7, 238–239 (1993)Google Scholar
  23. 23.
    Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. Journal of the American Chemical Society 126(50), 16344–16352 (2004)CrossRefGoogle Scholar
  24. 24.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biology 2, 424–436 (2004)CrossRefGoogle Scholar
  25. 25.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Symposium on Theory of Computing (STOC), pp. 459–468. ACM, New York (2000)Google Scholar
  26. 26.
    Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proceedings of the National Academy of Sciences USA 104(39), 15236–15241 (2007)CrossRefGoogle Scholar
  28. 28.
    Schulman, R., Winfree, E.: How crystals that sense and respond to their environments could evolve. Natural Computing 7, 219–237 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. SIAM Journal on Computation 39, 1581–1616 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Origins of Life and Evolution of Biospheres 31(1-2), 119–145 (2001)CrossRefGoogle Scholar
  31. 31.
    Wächtersäuser, G.: Before enzymes and templates: theory of surface metabolism. Microbiology and Molecular Biology Reviews 52(4), 452–484 (1988)Google Scholar
  32. 32.
    Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoetic self-reproduction of fatty acid vesicles. Journal of the American Chemical Society 116, 11649–11654 (1994)CrossRefGoogle Scholar
  33. 33.
    Wetmur, J.G., Fresco, J.: DNA probes: Applications of the principles of nucleic acid hybridization. Critical Reviews in Biochemistry and Molecular Biology 26(3-4), 227–259 (1991)CrossRefGoogle Scholar
  34. 34.
    Winfree, E.: The xgrow simulator,
  35. 35.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. American Mathematical Society, Providence (1996)Google Scholar
  36. 36.
    Winfree, E.: Simulations of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech (1998)Google Scholar
  37. 37.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic self-assembly. In: Chen and Reif [10], pp. 126–144Google Scholar
  38. 38.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  39. 39.
    Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Perseus Books, Cambridge (1992)zbMATHGoogle Scholar
  40. 40.
    Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M.T., Park, S.H., LaBean, T.H., Reif, J.H.: Programming DNA tube circumferences. Science 321, 824–826 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rebecca Schulman
    • 1
  • Erik Winfree
    • 2
  1. 1.University of California BerkeleyBerkeleyUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations