Efficient Turing-Universal Computation with DNA Polymers

  • Lulu Qian
  • David Soloveichik
  • Erik Winfree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6518)


Bennett’s proposed chemical Turing machine is one of the most important thought experiments in the study of the thermodynamics of computation. Yet the sophistication of molecular engineering required to physically construct Bennett’s hypothetical polymer substrate and enzymes has deterred experimental implementations. Here we propose a chemical implementation of stack machines — a Turing-universal model of computation similar to Turing machines — using DNA strand displacement cascades as the underlying chemical primitive. More specifically, the mechanism described herein is the addition and removal of monomers from the end of a DNA polymer, controlled by strand displacement logic. We capture the motivating feature of Bennett’s scheme: that physical reversibility corresponds to logically reversible computation, and arbitrarily little energy per computation step is required. Further, as a method of embedding logic control into chemical and biological systems, polymer-based chemical computation is significantly more efficient than geometry-free chemical reaction networks.


Polymer Reaction Turing Machine Transition Rule Bimolecular Reaction Signal Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Beaver, D.: A Universal Molecular Computer. In: Lipton, R., Baum, E. (eds.) DNA Based Computers, pp. 29–36. AMS, Providence (1996)Google Scholar
  3. 3.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)CrossRefGoogle Scholar
  4. 4.
    Benenson, Y., Shapiro, E.: Molecular computing machines. In: Encyclopedia of Nanoscience and Nanotechnology, pp. 2043–2056 (2004)Google Scholar
  5. 5.
    Bennett, C.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett, C.: The thermodynamics of computation – a review. International Journal of Theoretical Physics 21(12), 905–940 (1982)CrossRefGoogle Scholar
  7. 7.
    Bennett, C.: Time/space trade-offs for reversible computation. SIAM Journal on Computing 18, 766–776 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blinov, M., Faeder, J., Goldstein, B., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L.: Strand algebras for DNA computing. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Cardelli, L.: Two-Domain DNA Strand Displacement. In: Developments in Computational Models (DCM), pp. 33–47 (2010)Google Scholar
  11. 11.
    Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Chen, H., De, A., Goel, A.: Towards Programmable Molecular Machines. In: Foundations of Nanoscience (FNANO) (2008)Google Scholar
  13. 13.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kurtz, S., Mahaney, S., Royer, J., Simon, J.: Biological computing. In: Complexity Theory Retrospective II, pp. 179–195 (1997)Google Scholar
  15. 15.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202–1211. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  18. 18.
    Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. The Transactions of the IEICE E 72(3), 223–228 (1989)Google Scholar
  19. 19.
    Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Rothemund, P.: A DNA and restriction enzyme implementation of Turing machines. In: Lipton, R., Baum, E. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 75–119. AMS, Providence (1996)Google Scholar
  21. 21.
    Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biology 2(12), e424 (2004)CrossRefGoogle Scholar
  22. 22.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  23. 23.
    Smith, W.: DNA computers in vitro and vivo. In: Lipton, R., Baum, E. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 121–185. AMS, Providence (1996)Google Scholar
  24. 24.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Science 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  26. 26.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R., Baum, E. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. AMS, Providence (1996)Google Scholar
  27. 27.
    Winfree, E.: Simulations of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech (1998)Google Scholar
  28. 28.
    Yin, P., Turberfield, A., Sahu, S., Reif, J.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 10. LNCS, vol. 3384, pp. 426–444. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhang, D., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society 131(47), 17303–17314 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lulu Qian
    • 1
  • David Soloveichik
    • 4
  • Erik Winfree
    • 1
    • 2
    • 3
  1. 1.BioengineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Computer ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Computation & Neural SystemsCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Computer Science & EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations