Skip to main content

MEMS Processing and Fabrication Techniques and Technology—Silicon-Based Micromachining

  • Chapter
Microsystems and Nanotechnology

Abstract

The silicon-based micromachining technology, which is originated from the silicon IC (integrated circuits) technology, is the mainstream technology for MEMS fabrication, and the most MEMS products on market are manufactured with this technology. The silicon-based micromachining technologies can be divided into two categories: surface micromachining technology and bulk micromachining technology. Instead of introducing detailed individual techniques, this chapter will focus on utilizing and combining different processes to achieve different device fabrication and meet different requirements. For surface micromachining, isolation, metallization and monolithic integration are specially emphasized; while for bulk micromachining, we discuss more details on different sets of processes after a brief introduction of individual processes, such as DRIE and bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howe R. T., (1995), Recent advances in surface micromachining. IEEJ Tech. Dig. 13th Sensor Symp., 1–8

    Google Scholar 

  2. Petersen K. E., (1982), Silicon as a mechanical material. In Proc. IEEE 70: 420–457

    Article  CAS  Google Scholar 

  3. Bustillo J. M., R. T. Howe, and R. S. Muller, (1998), Surface micromachining for microelectromechanical systems. Proc. IEEE, 86: 1552–1574

    Article  CAS  Google Scholar 

  4. Core T. A., W. K. Tsang, and S. J. Sherman, (1993), Fabrication technology for an integrated surface-micromachined sensor. Solid State Technol, 36: 39–47

    CAS  Google Scholar 

  5. Hornbeck L. J., (1995), Projection displays and MEMS: timely convergence for a bright future. Proceedings of SPIE, Texas, USA, 1995, 2

    Google Scholar 

  6. Howe R. T., and R. S. Muller, (1983), Polycrystalline Silicon Micromechanical Beams. J. Electrochem. Soc., 130: 1420–1423

    Article  CAS  Google Scholar 

  7. Howe R. T., (1985), Polycrystalline Silicon Microstructures, In Micromachining and Micropackaging of Transducers. Fung C. D., P. W. Cheung, W. H. Ko, Fleming DG, Eds. New York: Elsevier, 169–187

    Google Scholar 

  8. Alley R. L., R. T. Howe, and K. Komvopoulos, (1988), The effect of release-etch processing on surface microstructure stiction. In Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, SC, USA, 1988, 202–207

    Google Scholar 

  9. Hoffman R. W., (1976), Mechanical Properties of Non-Metallic Thin Films, In Physics of Nonmetallic Thin Films, (NATO Advanced Study Institutes Series: Series B, Physics), Dupuy CHS and Cachard A., Eds., Plenum Press, 273–353

    Google Scholar 

  10. Hoffman R. W., (1975), Stresses in Thin Films: The Relevance of Grain Boundaries and Impurities. Thin Solid Films 34: 185–190

    Article  Google Scholar 

  11. Juan W. H., S. W. Pang, (1995), High aspect ratio Si etching for microsensor fabrication. J. Vac. Sci. Technol. A 13: 834–838

    Article  CAS  Google Scholar 

  12. Juan W. H., S. W. Pang, (1996), Released Si microstructures fabricated by deep etching and shallow diffusion, J. Microelectromech. Syst, 5: 19–23

    Google Scholar 

  13. Seidel H., L. Csepregi, A. Heuberger, and H. Baumg et al, (1990), Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, J. Electrochem. Soc. 137: 3612

    Article  CAS  Google Scholar 

  14. Kovacs G. T. A., N. I. Maluf, K. E. Petersen, (1998), Bulk micromachining of silicon. In Proceedings of the IEEE, 1998, 86(8): 1536–1551

    CAS  Google Scholar 

  15. Tong Q. Y., and U. Gösele, (1999), Semiconductor Wafer Bonding: Science and Technology. New York: Wiley

    Google Scholar 

  16. Nathanson H. C., and R. A. Wickstrom, (1965), A resonant gate surface transistor with high-q bandpass properties. IEEE Transactions on Electron Devices, 12: 507

    Article  Google Scholar 

  17. Tai Y. C., L. S. Fan, and R. S. Muller, (1989), IC-processed micro-motors: Design, technology, and testing. In Proc. IEEE Micro Electro Mechanical Systems (MEMS) Salt Lake City, UT, 1–6

    Google Scholar 

  18. Hao Y., Z. Li, and D. Zhang, (1999), Surface Sacrificial Layer Process, Electronics Science and Technology Review (Chinese), 12: 16

    Google Scholar 

  19. Koester D. A., R. Mahadevan, A. Shishkoff, and K. W. Markus, (1996), Smart-MUMPs Design Handbook Including MUMPs Introduction and Design Rules, rev 4. MEMS Technology Application Center MCNC

    Google Scholar 

  20. Koester D. A., R. Mahadevan, B. Hardy, and K. W. Markus, (2000), MUMPs Design Handbook, Revision 5.0. Cronos Integrated Microsystems, Research Triangle Park, NC

    Google Scholar 

  21. Nasby R., J. Sneigowski, J. Smith, S. Montague, C. Barron, W. Eaton, and P. McWhorter, (1996), Application of chemical-mechanical polishing to planarization of surface-micromachined devices. In proceedings of Solid-State Sensors and Actuators Workshop, Hilton Head SC, 48–53

    Google Scholar 

  22. Schriner H., B. Davies, J. Sniegowski, M. S. Rodgers, J. Allen, (1998), Sandia Agile MEMS Prototyping, Layout Tols, Education and Services Program. In proceedings of 2nd international conference on engineering design and automation, Maui, Hawaii, 1998

    Google Scholar 

  23. Tang W., T. H. Nguyen, M. W. Judy, and R. T. Howe, (1990), Electrostatic-comb drive of lateral polysilicon resonators, Sensors Actuators, A 21: 328–331

    Article  Google Scholar 

  24. Rodgers M., and J. Sniegowski, (1998), 5-level polysilicon surface micromachine technology: application to complex mechanical systems. In Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1998, 144–149

    Google Scholar 

  25. Nguyen C. T., L. P. B. Katehi, and G. M. Rebeiz, (1998), Micromachined devices for wireless communications. In Proc. IEEE 86: 1756–1768

    Article  Google Scholar 

  26. Yao J. J., (2000), RF MEMS from a device perspective, J. Micromech. Microeng, 10: R9–R38

    Article  CAS  Google Scholar 

  27. Dec A., and K. Suyama, (2000), A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors. IEEE J. Solid-State Circuits 35: 1231–1237

    Article  Google Scholar 

  28. Ashby K. B., I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, (1996), High Q inductors for wireless applications in a complementary silicon bipolar process. IEEE J.Solid-State Circuits, 31: 4–9

    Article  Google Scholar 

  29. Burghartz J. N., D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, (1997), Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates. IEEE Trans. Microw. Theory Tech. 45: 1961–1968

    Article  CAS  Google Scholar 

  30. Yeh J. A., H. Jiang, H. P. Neves, and N. C. Tien, (2000), Copper-encapsulated silicon micromachined structures. ASME/IEEE J. Microelectromech. Syst. 9: 281–287

    Article  CAS  Google Scholar 

  31. Read D. T., and J. W. Dally, (1994), Mechanical behavior of aluminum and copper thin films. AMD Mechan, Materials for Electron. Packag. 187: 41–49

    CAS  Google Scholar 

  32. Taylor W. P., and M. G. Allen, (1997), Integratedmagnetic microrelays: normally open, normally closed, and multi-pole devices. In Tech. Digest, 1997 Int. Conf. on Solid-State Sensors and Actuators, 1149–1152

    Google Scholar 

  33. Zavracky P. M., S. Majumder, and N. E. McGruer, (1997), Micromechanical switches fabricated using nickel surface micromachining, J. Microelectromech. Sys., 6: 3–9

    Article  Google Scholar 

  34. Young D. J., and B. E. Boser, (1996), A micromachined variable capacitor for monolithic low noise VCO’s. In Tech Dig. Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 1996, 86

    Google Scholar 

  35. Pierret R. F., (1996), Semiconductor Device Fundamentals. Addison-Wesley

    Google Scholar 

  36. Murarka S. P., (1983), Silicides for VLSI Applications. Academic

    Google Scholar 

  37. Wolf S., (1990), Silicon Processing for VLSI Era Vol. 2. Lattice Press

    Google Scholar 

  38. Lee H., (2000), Characterization of shallow silicide junctions for sub-quartermicron ULSI technology-extraction of silicidation induced Schottky contact area. IEEE Trans Electron Devices, 47: 762–767

    Article  CAS  Google Scholar 

  39. Lukyanchikova N. B., M. V. Petrichuk, N. Garbar, E. Simoen, A. Poyai, and C. Claeys, (2000), Impact of cobalt silicidation on the low-frequency noise behavior of shallow P—N junctions. IEEE Electron Device Lett, 21: 408–410

    Article  CAS  Google Scholar 

  40. Osburn C. M., J. Y. Tsai, and J. Sun, (1996), Metal silicides: active elements of ULSI contacts. J. Electron Mater, 25: 1725–1739

    Article  CAS  Google Scholar 

  41. Ohguro T., M. Saito, E. Morifuji, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata, and H. Iwai, (2000), Thermal stability of CoSi2 film for CMOS salicide. IEEE Trans. Electron Devices, 47: 2208–2213

    Article  CAS  Google Scholar 

  42. Fuji K., K. Kikuta, K. Inoue, K. Mikagi, S. Chikaki, T. Kikkawa, (1996), A thermally stable Ti—W salicide for deep-submicron logic with embedded DRAM. In IEDM Tech. Dig., San Francisco, CA, USA, 1996, 451–454

    Google Scholar 

  43. Ohguro T., et al., (1994), Analysis of resistance behavior in Ti-and Ni-Salicided polysilicon films. IEEE Trans. Electron Devices, 32: 2305–2317

    Article  Google Scholar 

  44. Li Z., G. Zhang, W. Wang, Y. Hao, T. Li, G. Wu, (2002), Study on the application of silicide in surface micromachining. Journal of Micromechanics and Microengineering, 12: 162–167

    Article  CAS  Google Scholar 

  45. Jiang H., Y. Wang, J. A. Yeh, N. C. Tien, (2000), On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microwave Theory Techniques, 48: 2415–2423

    Article  CAS  Google Scholar 

  46. Jiang H., J. A. Yeh, Y. Wang, N. C. Tien, (2000), Electromagnetically shielded high-Q CMOS-compatible copper inductors. In Tech. Dig. IEEE Int. Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2000, 330–331

    Google Scholar 

  47. Kiang M. H., et al., (1992), Planarized copper interconnects by selective electroless plating. In MRS Symp. Dig., 260, 1992, 745–755

    Google Scholar 

  48. Jiang H., (2001), A MEMS Fabrication Technology for On-chip Radio-frequency Passive Components. Thesis, Cornell University

    Google Scholar 

  49. Shi W., N. C. Tien, Z. Li, (2007), A Highly Reliable Lateral MEMS Switch Utilizing Undoped Polysilicon as Isolation Material. Journal Of Microelectromechanical Systems, 16: 1173–1184

    Article  CAS  Google Scholar 

  50. Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2002), Low-voltage lateral-contact microrelays for RF applications. In Proc. 15th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Las Vegas, NV, USA, Jan. 2002, 645–648

    Google Scholar 

  51. Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2004), A low-voltage lateral MEMS switch with high RF performance. J. Microelectromech. Syst. 13: 902–911

    Article  CAS  Google Scholar 

  52. Kruglick E. J. J., K. S. J. Pister, (1999), Lateral MEMS microcontact considerations. J. Microelectromech. Syst. 8: 264–271

    Article  Google Scholar 

  53. Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2002), Low-Voltage Lateral-Contact Microrelays For RF Applications. In proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’02), Las Vegas, NV, USA, Jan. 2002, 645–648

    Google Scholar 

  54. Moseley R. W., E. M. Yeatman, A. S. Holmes, R. R. A. Syms, A. P. Finlay, and P. Boniface, (2006), Laterally actuated, low voltage, 3-port RF MEMS switch. In Proc. 19th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Istanbul, Jan. 2006, 878–881

    Google Scholar 

  55. Li Z., D. Zhang, T. Li, W. Wang, G. Wu, (2000), Bulk micromachined relay with lateral contact. J. Micromech. Microeng, 10: 329–333

    Article  Google Scholar 

  56. Li Z., Z. Yang, Z. Xiao, Y. Hao, T. Li, G. Wu, Y. Wang, (2000), A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching. Sensors and Actuators A: Physical 83: 24–29

    Article  CAS  Google Scholar 

  57. Wood R., R. Mahadevan, V. Dudley, A. Cowen, E. Hill, K. Markus, (1998), MEMS microrelays. Mechatronics 8: 535–547

    Article  Google Scholar 

  58. Simon J., S. Saffer, F. Sherman, C. Kim, (1998), Lateral polysilicon microrelays with a mercury microdrop contact. IEEE Trans. Industr. Electron. 45: 854–860

    Article  Google Scholar 

  59. Rebeiz G. M., (2003), RF MEMS: Theory, Design and Technology. Hoboken, NJ: Wiley

    Book  Google Scholar 

  60. Brosnihan T. J., J. M. Bustillo, A. P. Pisano, R. T. Howe, Embedded interconnect and electrical isolation for high-aspect ratio, SOI inertial instruments. In Proc. 9th IEEE Int. Conf. on Solid-State Sensors & Actuators (Transducers’ 99), Jun. 1999, 1002–1005

    Google Scholar 

  61. Muller L., J. M. Heck, R. T. Howe, A P. Pisano, (2000), Electrical isolation process for molded, high-aspect-ratio polysilicon microstructures. In Proc. 13th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Jan. 2000, 590–595

    Google Scholar 

  62. Que L., J. Park, Y. B. Gianchandani, (2001), Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices. J. Microelectromech. Syst. 10: 247–254

    Article  CAS  Google Scholar 

  63. Borwick R. L., P. A. Stupar, and J. DeNatale, (2003), A hybrid approach to low-voltage MEMS switches. In Proc. 12th IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers’03), Jun. 2003, 859–862

    Google Scholar 

  64. Yun W., (1992), A Surface Micromacined Accelerometer with Integrated CMOS Detection Circuitry. Ph.D. Thesis, U.C.Berkeley

    Google Scholar 

  65. Howe R. T., (1995), Polysilicon Integrated Microsystems: Technologies and Applications. In Tech. Digest. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’ 95)/Eurosensors IX, Stockholm, Sweden, 1995, 43–46

    Google Scholar 

  66. Bustillo J. M., G. K. Fedder, C. T. Nguyen, and R. T. Howe, (1994), Process technology for modular integration of CMOS and polysilicon microstructures, Microsystem Technologies, 1: 30–41

    Article  Google Scholar 

  67. Franke A. E., J. M. Heck, T. King, R. T. Howe, (2003), Polycrystalline silicon-germanium films for integrated Microsystems. J. Microelectromechanical Systems, 12: 160–171

    Article  CAS  Google Scholar 

  68. Smith J. H., S. Montague, J. J. Sniegowski, and J. R. Murray, et al., (1995), Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. In Proc. Int. Electron Devices Meeting, Washington, DC, 1995, 609–612

    Google Scholar 

  69. Fedder G. K., S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. Lu, and L. R. Carley, (1996), Laminated high-aspect-ratio micro-structures in a conventional CMOS process, Sens. Actuators A, 57: 103–110

    Article  Google Scholar 

  70. Zhu X., D. W. Greve, R. Lawton, N. Presser, and G. K. Fedder, (1998), Factorial experiment on CMOS-MEMS RIE post processing. In Proc. 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, MA, 1998, 33–42

    Google Scholar 

  71. Xie H., and G. K. Fedder, (2001), A CMOS-MEMS lateral-axis gyroscope. In Tech. Dig. 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001) Interlaken, Switzerland, 2001, 162–165

    Google Scholar 

  72. Burgett S. R., K. S. Pister, and R. S. Fearing, (1992), Three Dimensional Structures Made with Microfabricated Hinges. In proceedings of ASME Micromechanical Sensors, Actuators, and Systems, Anaheim, CA, 1992, 1–11

    Google Scholar 

  73. Lin L. Y., S. S. Lee, M. C. Wu, and K. J. Pister, (1995), Micromachined integrated optics for free-space interconnections. In Proc. IEEE Microelectromech. Syst. Amsterdam, the Netherlands, 1995, 77–82

    Google Scholar 

  74. Suzuki K., I. Shimoyama, and H. Miura, (1994), Insect-model based microrobot with elastic hinges, J. Microelectromechanical Syst., 3: 4–9

    Article  CAS  Google Scholar 

  75. Hui E. E., R. T. Howe, and M. S. Rodgers, (2000), Single-step assembly of complex 3-D microstructures. In Proc 13th Int. Conf. Microelectromechanical Systems Miyazaki, Japan, 2000, 602–607

    Google Scholar 

  76. Fan L., R. T. Chen, A. Nespola, M. C. Wu, (1998), Universal MEMS platforms for passive RF components: suspended inductors and variable capacitors. In Proc. IEEE, 11th Ann. Int. Workshop on Micro Electro Mechanical Systems, 1998, 29–33

    Google Scholar 

  77. Goldsmith C. L., Z. Yao, S. Eshelman, and D. Denniston, (1998), Performance of low-loss RF MEMS capcitive switches, IEEE Microwave Guided Wave Lett., 8: 269–271

    Article  Google Scholar 

  78. Yao Z. J., S. Chen, S. Eshelman, D. Denniston, and C. Goldsmith, (1999), Micromachined low-loss microwave switches, J. Microelectromech. Syst., 8: 129–134

    Article  Google Scholar 

  79. Honer K. A., (2001), Surface Micromachining Techniques for Integrated Microsystems. Thesis, Stranford University

    Google Scholar 

  80. Hornbeck L. J., (1983), 128×128 deformable mirror device. IEEE Transactions on Electron Devices, 30: 539–545

    Article  Google Scholar 

  81. Hornbeck L. J., (1996), Digital Light Processing and MEMS: An Overview. In Digest of the IEEE/LEOS 1996 Summer Topical Meetings, Keystone, CO, USA, 1996, 7–8

    Google Scholar 

  82. Hornbeck L. J., (1996), Digital Light Processing: A New MEMS-Based Display Technology. In Technical Digest of the IEEJ 14th Sensor Symposium, Kawasaki, Japan, 1996, 297–304

    Google Scholar 

  83. Hornbeck L. J., (1990), Deformable-mirror spatial light modulators. In Proceedings of the SPIE-The International Society for Optical Engineering, 1990, 86–102. at texas instruments

    Google Scholar 

  84. Amm D. T., R. W. Corrigan, (1999), Optical performance of the grating light valve technology. In: Proceedings of the SPIE-The International Society for Optical Engineering, 1999, 71–78

    Google Scholar 

  85. Sampsell J. B., (1994), An Overview of the Performance Envelope of Digital Micromirror Device (DMD) Based Projection Display Systems. In: Digest of Technical Papers, Society for Information Display International Symposium, San Jose, CA, 1994, 1–4

    Google Scholar 

  86. Van Kessel P. F., L. J. Hornbeck, R. E. Meier, M. R. Douglass, (1998), A MEMSA MEMS-Based Projection Display. In proceedings of the IEEE 86 (8): 1687–1704

    Article  Google Scholar 

  87. Goldsmith C., T. Lin, B. Powers, W. Wu, B. Norvell, (1995), Micromechanical membrane switches for microwave applications. In Tech. Digest, IEEE Microwave Theory and Techniques Symp., 1995, 91–94

    Google Scholar 

  88. Goldsmith C., J. Randall, S. Eshelman, T. Lin, D. Denniston, S. Chen, B. Norvell, (1996), Characteristics of micromachined switches at microwave frequencies. In Tech. Digest, IEEE Microwave Theory and Techniques Symp., 1996, 1141

    Google Scholar 

  89. Young D. J., B. E. Boser, (1997), A micromachine-based RF low-noise voltage-controlled oscillator. In Proceedings of the IEEE 1997 Custom Integrated Circuits Conference, New York, USA, 1997, 431–434

    Google Scholar 

  90. Young D. J., V. Malba, J. J. Ou, A. F. Bernhardt, B. E. Boser, (1997), Monolithic high-performance three-dimensional coil inductors for wireless communication applications. In International Electron Devices Meeting 1997. IEDM Technical Digest, New York, NY, USA, 1997, 67–70

    Google Scholar 

  91. Young D. J., V. Malba, J. Ou, A. F. Bernhardt, B. E. Boser, (1998), A low-noise RF voltage-controlled oscillator using on-chip high-Q three-dimensional coil inductor and micromachined variable capacitor. In proceedings of Solid-State Sensor and Actuator Workshop, Cleveland, OH, USA, 1998, 128–131

    Google Scholar 

  92. Zhao Y., M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, J. Kitching, (2002), Optomechanical uncooled infrared imaging system: design, microfabrication, and performance, J. Microelectromech. Syst., 11(2): 136–146

    Article  CAS  Google Scholar 

  93. Mao M., T. Perazzo, O. Kwon, A. Majumdar, (1999), Direct-view uncooled microoptomechanical infrared camera. In Proceedings of 12th IEEE International Conference on MEMS, New York, NY, 1999, 100–105

    Google Scholar 

  94. Choi J., J. Yamaguchi, S. Morales, R. Horowitz, Y. Zhao, A. Majumdar, (2004), Design and control of a thermal stabilizing system for a MEMS optomechanical uncooled infrared imaging camera, Sensors and Actuators A: Physical, 104: 132–142

    Article  Google Scholar 

  95. Ishizuya T., J. Suzuki, K. Akagawa, T. Kazama, (2002), 160 × 120 pixels optically readable bimaterial infrared detector. In Proceedings of 15th IEEE International Conference on MEMS, New York, NY, USA, 2002, 578–581

    Google Scholar 

  96. Grbovic D., N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, B. Mclntyre, (2006), Uncooled infrared imaging using bimaterial microcantilever arrays, Applied Physics Letters, 89: 073118

    Article  Google Scholar 

  97. Kovacs G. T. A, (1998), Micromachined Transducers Sourcebook. McGraw-Hill

    Google Scholar 

  98. Frühauf J., B. Hannemann, (1997), Anisotropic multi-step etch processes of silicon. J. Micromech. Microeng. 7: 137–140

    Article  Google Scholar 

  99. Kendall D. L., (1990), A new theory for the anisotropic etching of silicon and some underdeveloped chemical micromachining concepts. J. Vac. Sci. Technol. 8(4): 3598–3605

    Article  CAS  Google Scholar 

  100. Yan G., G. Chan, I. Hsing, R. Sharma, J. Sin, Y. Wang, (2001), An improved TMAH Si-etching solution without attacking exposed aluminum, Sensors and Actuators A: Physica, 89(1–2): 135–141

    Article  CAS  Google Scholar 

  101. STS, (1997), “Anisotropic Dry Silicon Etching”, presented at The symposium on microstructures and microfabricated systems at the Annual meeting of the electrochemical society, Montreal, Quebec, Canada, May 4–9, 1997

    Google Scholar 

  102. Ishihara K., C. Yun, A. A. Ayón, M. A. Schmidt, (1999), A Inertial sensor Technology Using DRIE and Wafer Bonding with Interconnecting capability, Journal of Microelectromechanical Systems, 8(4): 403–408

    Article  CAS  Google Scholar 

  103. Ishihara K., C. F. Yung, A. Ayon, M. A. Schmidt, (1999), An inertial sensor technology using DRIE and wafer bonding with enhanced interconnect capability. In 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 254

    Google Scholar 

  104. Docker P. T., P. Kinnell, M. C. L. Ward, (2003), A dry single-step process for the manufacture of release MEMS structures. J. Micromech. Microeng, 13: 790–794

    Article  CAS  Google Scholar 

  105. Zhu Y., G. Yan, J. Fan, J. Zhou, X. Liu, Z. Li, Y. Wang, (2005), Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its application. J. Micromech. Microeng, 15: 636–642

    Article  CAS  Google Scholar 

  106. Zhu Y., G. Yan, J. Fan, X. Liu, J. Zhou, Y. Wang, (2005), Post-CMOS process for high-aspect-ratio monolithically integrated single crystal silicon microstructures. In Proceedings of Transducers’ 05, 2005, 1130–1133

    Google Scholar 

  107. Klaassen E. H., K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, G. T. A. Kovacs, (1996), Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sensors and Actuators A: Physical, 52(1–3): 132–139

    Article  CAS  Google Scholar 

  108. Schmidt M. A., (1998), Wafer-to-wafer bonding for microstructure formation. In Proceedings of the IEEE, 86(8): 1575–1585

    Article  CAS  Google Scholar 

  109. Petersen K., P. Barth, J. Poydock, J. Brown, J. Mallon, J. Bryzek, (1988), Silicon fusion bonding for pressure sensors. In Proceedings of Solid-State Sensor and Actuators Workshop, IEEE, 1988, 144–147

    Google Scholar 

  110. Harendt C., H. G. Graf, B. Hofflinger, E. Penteker, (1992), Silicon fusion bonding and its characterization. J. Micromech. Microeng, 2: 113–116

    Article  CAS  Google Scholar 

  111. Haisma J., B. A. C. M. Spierings, U. K. P. Biermann, A. A. van Gorkum, (1994), Diversity and feasibility of direct bonding: a survey of a dedicated optical technology. Appl. Opt., 33: 1154–1169

    Article  CAS  Google Scholar 

  112. Albauqh K. B., P. E. Cade, D. H. Rasmussen, (1988), Mechanisms of anodic bonding of silicon to pyrex glass. In Proceedings of Solid-State Sensor and Actuators Workshop, IEEE, 1988, 109–110

    Google Scholar 

  113. Dragoi V., T. Glinsner, G. Mittendorfer, B. Wieder, P. Lindner, (2003), Adhesive wafer bonding for MEMS applications. In Proceeding of SPIE, 2003, 5116(1): 160–167

    CAS  Google Scholar 

  114. Cheng Y., L. Lin, K. Najafi, (2000), Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. Journal of Microelectromechanical Systems, 9(1): 3–8

    Article  CAS  Google Scholar 

  115. Sparks D., G. Queen, R. Weston, G. Woodward, M. Putty, L. Jordan, S. Zarabadi, K. Jayakar, (2001), Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. J. Micromech. Microeng, 11: 630–634

    Article  CAS  Google Scholar 

  116. Knechtel R., (2005), Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12(1–2): 63–68

    Article  CAS  Google Scholar 

  117. Wolffenbuttel R. F., and K. D. Wise, (1994), “Low temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors and Actuators A, 43: 223–229

    Article  CAS  Google Scholar 

  118. Lin C., C. Hsu, H. Yang, W. Wang, W. Fang, (2008), Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration. J. Micromech. Microeng, 18: 1–6

    Google Scholar 

  119. Chae J., H. Kulah, K. Najafi, (2005), A CMOS-compatible high aspect ratio siliconon-glass in-plane micro-accelerometer. J. Micromech. Microeng, 15: 336–345

    Article  CAS  Google Scholar 

  120. Chen B. T., J. M. Miao, F. E. H. Toy, (2007), Fabrication and characterization of DRIE-micromachined electrostatic, microactuators for hard disk drives. Microsys. Technol, 13: 11–19

    Article  Google Scholar 

  121. Xiao Z., G. Wu, D. Zhang, Y. Hao, Z. Li, (1999), Lateral capacity sensed accelerometer fabricated with the anodic bonding and the high aspect ratio etching. In proceedings of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1518

    Google Scholar 

  122. Li Z., Z. Xiao, Y. Hao, T. Li, G. Wu, Y. Wang, (1999), A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching. In 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1594

    Google Scholar 

  123. Baek S. S., Y. S. Oh, B. J. Ha, A. D. An, B. H. An, H. Song, C. M. Song, (1999), A symmetrical Z-axis gyroscope with a high aspect ratio using simple and new process. In Proc. IEEE 12th Int. Workshop on Micro Electro-Mechanical Systems (MEMS’99), 1999, 612

    Google Scholar 

  124. Mochida Y., M. Tamura, K. Ohwada, (1999), A micro micromachined vibrating rate gyro with independent beams for drive and detection modes. In Proc. MEMS’99, 1999, 618

    Google Scholar 

  125. Kobayashi S., T. Hara, T. Oguchi, Y. Asaji, K. Yaji, K. Owada, (1999), Double-frame silicon gyroscope packaged under low pressure by wafer bonding. In proceedings of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 910

    Google Scholar 

  126. Alper S. E., T. Akin, (2005), A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate. J. Microelectromech. Syst, 14: 707–717

    Article  CAS  Google Scholar 

  127. Lee M., S. Kang, K. Jung, S. Choa, Y. C. Cho, (2005), A high yield rate MEMS gyroscope with a packaged SiOG process. J. Micromech. Microeng, 15: 2003–2012

    Article  CAS  Google Scholar 

  128. Iliescu C., G. L. Xu, V. Samper, F. E. H. Tay, (2005), Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng, 15: 494–500

    Article  CAS  Google Scholar 

  129. Chen B., J. Miao, (2007), Influence of deep RIE tolerances on comb-drive actuator performance. J. Phys. D: Appl. Phys, 40: 970–976

    Article  CAS  Google Scholar 

  130. Chae J., H. Kulah, K. Najafi, (2002), A Hybrid Silicon-On-Glass (SOG) Lateral Micro-Accelerometer with COMS Readout Circuitry. In proceedings of MEMS 2002, 623–626

    Google Scholar 

  131. Richard A. Gottscho, and C.W. Jurgensen, (1992), “Microscopic uniformity in Plasma etching,” J. Vac. Sci. Technol. B, 10(5): 2133–2147

    Article  Google Scholar 

  132. Jansen H., M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, M. Elwenspoek, (1997), RIE lag in high aspect ratio trench etching of silicon. Microelectronic Engineering, 35: 45–50

    Article  CAS  Google Scholar 

  133. Chung C., (2004), Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system. J. Micromech. Microeng., 14: 656–662

    Article  CAS  Google Scholar 

  134. Ayon A. A., K. Ishihara, R. A. Braff, H. H. Sawin, M. A. Schmidt, (1999), Microfabrication and testing of suspended structure compatible with silicon-on-insulator technology. J. Vac. Sci. Technol. B, 17(4): 1589–1593

    Article  CAS  Google Scholar 

  135. Fan J., Y. Zhu, Z. Yang, J. Zhou, X. Liu, G. Yan, (2004), An improved method employed in anodic bonded glass-silicon gyroscopes to avoid footing effect in DRIE. In Proc. of ICSICT’04, Oct. 2004, 1896–1899

    Google Scholar 

  136. Kinoshita T., M. Hane, J. P. McVittie, (1996), Notching as an example of charging in uniform high density plasmas. J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. B, 14(1): 560–565

    Article  CAS  Google Scholar 

  137. Nozawa T., T. Kinoshita, T. Nishizawa, A. Narai, T. Inoue, A. Nakaue, (1995), The electron charging effects of plasma on notch profile defects. Jpn. J. Appl. Phys., 34(4B): 2107–2113

    Article  CAS  Google Scholar 

  138. Matsuura T., M. Chabloz, J. Jiao, Y. Yoshida, K. Tsutsumi, (2001), A method to evade silicon backside damage in deep reactive ion etching for anodically bonded glass-silicon structures. Sensors and Actuators A, 89: 71–75

    Article  CAS  Google Scholar 

  139. Yoshida Y., M. Kumagai, K. Tsutsumi, (2003), Study of silicon backside damage in deep reactive ion etching for bonded silicon-glass structures. Microsystem Technology, 9: 167–170

    Article  CAS  Google Scholar 

  140. McAuley S. A., H. Ashraf, L. Atabo, A. Cambers, S. Hall, J. Hopkings, G. Nicholls, (2001), Silicon micromachining using a high-density plasma source. Journal of Physics D: Applied Physics, 34: 2769–2774

    Article  CAS  Google Scholar 

  141. Shridhar U., et al, (1999), Single crystal silicon microstructures using trench isolation. In Proc. 11th Int. Conf. Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 258

    Google Scholar 

  142. Hofmann W., N. C. MacDonald, (1997), Fabrication of multi-level electrically isolated high-aspect-ratio single crystal silicon microstructures. In Proc. IEEE 10th MicroElectro Mechanical Systems (MEMS’97), Negoya, Japan, 1997, 460

    Google Scholar 

  143. Brosnihan T. J., J. M. Bustillo, A. P. Pisano, R. T. Howe, (1997), Embedded interconnect and electrical isolation for high-aspect-ratio SOI inertial instruments. In Proc. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, 1997, 637–640

    Google Scholar 

  144. Young D. J., J. L. Tham, B. E. Boser, (1999), A micromachine-based low phase-noise GHz voltage-controlled oscillator for wireless communications. In proceeding of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1386

    Google Scholar 

  145. Sun X. Q., K. R. Farmer, W. N. Carr, (1998), A bistable microrelay on two-segment multimorph cantilever actuators. In Proc. IEEE 11th Int. Workshop on Micro Electro-Mechanical Systems (MEMS’98), 1998, 154

    Google Scholar 

  146. Zhou S., X. Q. Sun, W. N. Carr, (1997), A micro variable inductor chip using MEMS relays. In Proc. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, 1997, 1137

    Google Scholar 

  147. Park J. H., H. K. Kim, Y. W. Kwon, Y. K. Kim, (1999), A tunable millimeter filter using coplanar wave guide and micromachined variable capacitor. In proceeding of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1272

    Google Scholar 

  148. Zhang D., Z. Li, T. Li, G. Wu, (2001), A Novel Isolation Technology in Bulk Micromachining Using DRIE and Polysilicon Refill. Journal of Micromechanics and Microengineering, 11: 13–19

    Article  CAS  Google Scholar 

  149. Liu A. Q., M. Tang, A. Agarwal, A. Alphones, (2005), Low-loss lateral micromachined switches for high frequency applications. J. Micromech. Microeng, 15: 157–167

    Article  Google Scholar 

  150. Tang M., A. Liu, A. Agarwal, Q. X. Zhang, P. Win, (2004), A new approach of lateral RF MEMS. switch. Analog Integr.Circuits Signal Process, 40: 165–173

    Article  Google Scholar 

  151. Tang M., P. Win, W. L. Goh, A. Agarwal, L. C. Law, A. Liu, (2004), A single-pole double-throw (SPDT) circuit using deep etching lateral metal-contact switches. In IEEE MTT-S Int. Microwave Symp. Digest., 2004, 581–584

    Google Scholar 

  152. Miller K., A. Cowen, G. Hames, B. Hardy, (2004), SOIMUMPs Design Handbook. MEMScAP.f

    Google Scholar 

  153. Amini B. V., R. Abdolvand, F. Ayazi, (2005), Sub-micro-gravity capacitive SOI microaccelerometers In Proceedings of Int. Conf. Solid State Sensors, Actuators and Microsystems (Transducers’ 05), 515–518

    Google Scholar 

  154. Amini B. V., R. Abdolvand, F. Ayazi, (2006), A 4.5-mW Closed-Loop DS Micro-Gravity CMOS SOI Accelerometer. In Proceedings of ISSCC, San Francisco, CA, Feb. 2006

    Google Scholar 

  155. Amini B. V., F. Ayazi, (2005), Micro-gravity capacitive silicon-on-insulator accelerometers. J. Micromech. Microeng, 15(11): 2113–2120

    Article  CAS  Google Scholar 

  156. Kevin A. Shaw, Z. L. Zhang, and N. C. MacDonald, (1994), “SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors and Actuators A, 40: 63–70

    Article  Google Scholar 

  157. Vrtacnik D., D. Resnik, U. Aljancic, et al., (2007), Thin FC film for sidewall passivation in Scream process for MEMS. In Proceedings of Africon’07, Africa, Africon, 2007, 26–28

    Google Scholar 

  158. Wu J, T. Pike, C. P. Wong, (1999), Novel bi-layer conformal coating for reliability without hermeticity MEMS encapsulation. IEEE Trans. Comp. Packag., Manufact. Technol. C 22: 195

    CAS  Google Scholar 

  159. Sun C., C. H. Wang, M. H. Tsai, et al., (2008), A novel double-side Cmos-Mems post processing for monolithic sensor integration. In Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems (IEEE MEMS’08), Tucson, 2008, 90–93

    Google Scholar 

  160. Yang Y. J., W. C. Kuo, (2005), A novel fabrication method for suspended high-aspectratio microstructures. J. Micromech. Microeng, 15: 2184–2193

    Article  CAS  Google Scholar 

  161. You L., G. R. Yang, C. I. Lang, et al., (1992), Vapor deposition of parylene films from precursors. In Proceedings of 3rd Biennial Meeting Chem. Perspectives Microelectron. Mater., Boston, 1992

    Google Scholar 

  162. Judy M. W., (2004), Evolution of Integrated Inertial MEMS Technology. In proceedings of Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, 2004, 27–30

    Google Scholar 

  163. Chen T. D., T. W. Kelly, D. Collins, D. Bain, B. Berthold, T. J. Brosnihan, T. Denison, J. Kuang, M. OKane, J. W. Weigold, (2005), The Next Generation Integrated MEMS and CMOS Process on SOI Wafers for Overdamped Accelerometers. In proceedings of Transducers’05, 2005, 1122–1125

    Google Scholar 

  164. Takao H., T. Ichikawa, T. Nakata, K. Sawada, M. Ishida, (2008), Post-CMOS Integration Technology Of Thick-Film SOI MEMS Devices Using Micro Bridge Interconnections. In proceedings of MEMS 2008, 359–362

    Google Scholar 

  165. Ghosh S., M. Bayoumi, (2005), On integrated CMOS-MEMS system-on-chip. In Proceedings of The 3rd International IEEE-NEWCAS Conference, 31–34

    Google Scholar 

  166. Xie H., L. Erdmann, X. Zhu, K. J. Gabriel, G. K. Fedder, (2002), Post-CMOS processing for high-aspect-ratio integrated silicon microstructures. J. Microelectromechan. Syst., 11: 93–101

    Article  CAS  Google Scholar 

  167. Shaw K. A., N. C. MacDonald, (1996), Integrating SCREAM micromachined devices with integrated circuits. In Proceedings of IEEE MEMS’ 96, 1996, 44–48

    Google Scholar 

  168. Yan G., et al., (2004), Integrated bulk micromachined gyroscope using deep trench isolation technology. In Proceedings of. IEEE MEMS04, 2004, 605–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z., Liu, B., Wang, W. (2012). MEMS Processing and Fabrication Techniques and Technology—Silicon-Based Micromachining. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_9

Download citation

Publish with us

Policies and ethics