Skip to main content

Abstract

Microelectromechanical systems (MEMS) involve both electronic and mechanical elements that may perform sensing, actuation, and other functions such as signal transduction, processing, control and communication. These systems have been evolving from simple function-specific devices to elaborate systems with complicated microstructures and integrative circuitry with the help of modern design tools and advanced manufacturing capabilities. Various engineering issues and problems including functionality, performance, integration, packaging, reliability, cost, etc. must be systematically and thoroughly considered for constructing these new generation microsystems. This chapter presents an overview on the design process with which engineers formulate plans for the realization of MEMS devices and systems, taking advantages of fundamental sciences on device physics, computer aided design (CAD) tools, as well as state-of-art fabrication libraries and manufacturing experiences. A short introduction to MEMS design is covered in Section 8.1. Section 8.2 addresses CAD tools for MEMS, including the current available software and research directions in this area. Design issues in the two most common micromachining processes, bulk-micromachining and surface-micromachining processes, have been discussed in Sections 8.3 and 8.4 with design examples. Finally, we conclude the chapter with summary and future trends in Section 8.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kovacs G. T. A., (1998) Micromachined Transducers Sourcebook, WCB/McGraw-Hill

    Google Scholar 

  2. Senturia S. D., (2001) Microsystem Design, Kluwer Academic Publishers

    Google Scholar 

  3. Maluf N, (1999) An Introduction to Microelectromechanical Systems Engineering, Artech House

    Google Scholar 

  4. Trimmer W, (1997) Micromechanics and MEMS: Classic and Seminal Papers to 1990, IEEE Press

    Google Scholar 

  5. Nguyen N. T., and S. T. Wereley, (2002) Fundamentals and Applications of Microfluidic, Artech House

    Google Scholar 

  6. Manz A. and H. Becker, (1999) Microsystem Technology in Chemistry and Life Sciences, Springer Verlag

    Google Scholar 

  7. Menz W., J. Mohr, and O. Paul, (2001) Microsystem technology, Wiley-VCH

    Google Scholar 

  8. Shigley J. E., and C. R. Mischke, (2001) Mechanical Engineering Design, McGraw-Hill

    Google Scholar 

  9. Pahl G., and W. Beitz, (1996) Engineering Design, Springer

    Google Scholar 

  10. French M., (1999) Conceptual Design for Engineers, Springer

    Google Scholar 

  11. System Planning, (1999) “Microelectromechanical Systems (MEMS), An SPC Market Study”

    Google Scholar 

  12. Senturia S. D., R. Harris, B. Johnson, S. Kim, K. Nabors, M Shulman, and J. White, (1992) “A computer-aided design system for microelectromechanical systems,” Journal of Microelectromechanical Systems, 1(1): 3–13

    Article  Google Scholar 

  13. Mukherjee T., G. K. Fedder and R. D. Blanton, (1999) “Hierarchical Design and Test of Integrated Microsystems,” IEEE Design and Test, 16(4): 18–27

    Article  Google Scholar 

  14. Clark J. V., D. Bindel, W. Kao, E. Zhu, A. Kuo, N. Zhou, J. Nie, J. Demmel, Z. Bai, S. Govindjee, K. S. J. Pister, M. Gu, and A. Agogino, (2002) “Addressing the Needs of Complex MEMS Design,” Proceedings of IEEE Micro Electro Mechanical Systems Conference, 204–209

    Google Scholar 

  15. Sandmaier H., H. L. Offereins, and B. Folkmer, (1993) “CAD tools for micromechanics,” Journal of Micromechanics and Microengineering, 3(3): 103–106

    Article  Google Scholar 

  16. Coventorware, Coventor, Inc., http://www.coventor.com/coventorware/

    Google Scholar 

  17. IntelliSuite, IntelliSense Software Corp., http://www.intellisensesoftware.com/products.html

    Google Scholar 

  18. MEMSCAP, MEMSCAP, Inc., http://www.memscap.com/products-cad.html

    Google Scholar 

  19. MEMX, MEMX Incorporated, http://www.memx.com/design_tools.htm

    Google Scholar 

  20. PhoeniX, PhoeniX BV, http://www.phoenixbv.com/index.html

    Google Scholar 

  21. NODAS, Carnegie Mellon University, http://www.ece.cmu.edu/~mems/projects/memsyn/ nodasv1_4/index.shtml

    Google Scholar 

  22. SUGAR, U. C. Berkeley, http://www-bsac.eecs.berkeley.edu/cadtools/sugar

    Google Scholar 

  23. ANSYS, ANSYS, Inc., http://www.ansys.com/

    Google Scholar 

  24. ABAQUS, ABAQUS, Inc., http://www.hks.com/

    Google Scholar 

  25. FEMLAB, COMSOL, Inc., http://www.comsol.com/

    Google Scholar 

  26. CFDRC, CFD Research Corporation, http://www.cfdrc.com/

    Google Scholar 

  27. FLOW-3D, Flow Science, Inc., http://www.flow3d.com/

    Google Scholar 

  28. HFSS, Ansoft Corporation, http://www.ansoft.com/products/hf/hfss/

    Google Scholar 

  29. ACES, U.I. Urbana-Champaign, http://mass.micro.uiuc.edu/research/completed/aces/

    Google Scholar 

  30. SIMODE, TU Chemnitz, http://www.infotech.tu-chemnitz.de/~wetel/simode.htm

    Google Scholar 

  31. L-Edit Pro, Tanner Research, Inc., http://www.tanner.com/EDA/products/ledit/default.htm

    Google Scholar 

  32. LinkCAD, Bay Technology, http://www.linkcad.com/site/linkcad

    Google Scholar 

  33. Fruhauf J., K. Trautman, J. Witting, and D. Zeilke, (1993) “A Simulation tool for orientation dependent etching,” Journal of Micromechanics and Microengineering, 3: 113–115

    Article  Google Scholar 

  34. Asaumi K., Y. Iriye, and K. Sato, (1997) “Anisotropic-etching process simulation system MICROCAD analyzing complete 3D etching profiles of single crystal silicon,” Proceedings of IEEE Micro Electro Mechanical Systems Conference, 412–417

    Google Scholar 

  35. Zhu Z., and C. Liu, (2000) “Micromachining Process Simulation Using a Continuous Cellular Automata Method,” Journal of Microelectromechanical Systems, 9(2): 252–261

    Article  Google Scholar 

  36. Fujinaga M., and N. Kotani, (1997) “3-D topography simulator (3-D MULSS) based on a physical description of material topography,” IEEE Transaction on Electron Devices, 44: 226–238

    Article  CAS  Google Scholar 

  37. Hubbard T. J., and E. K. Antonsson, (1994) “Emergent faces in crystal etching,” Journal of Microelectromechanical Systems, 3(1): 19–28

    Article  Google Scholar 

  38. Tellier C. R., and S. Durand, (1997) “Micromachining of (hhl) silicon structures: Experiments and 3D simulation of etched shapes,” Sensors Actuators A, A60: 168–175

    Article  Google Scholar 

  39. Madou M. J., (1997) Fundamentals of Microfabrication, CRC Press

    Google Scholar 

  40. Petersen, K. E. (1982) “Silicon as a Mechanical Material,” Proceedings of the IEEE, 70: 420–457

    Article  CAS  Google Scholar 

  41. Kovacs G. T. A., N. I. Maluf, and K. E. Petersen, (1998) “Bulk Micromachining of Silicon,” Proceedings of the IEEE, 86: 1536–1551

    Article  CAS  Google Scholar 

  42. Robbins H. R., and B. Schwartz, (1959) “Chemical Etching of Silicon—I,” J. Electrochem, Soc., 106(6): 505–508

    Article  CAS  Google Scholar 

  43. Robbins H. R., and B. Schwartz, (1960) “Chemical Etching of Silicon—II,” J. Electrochem. Soc., 107(2): 108–111

    Article  CAS  Google Scholar 

  44. Schwartz B., and H. R. Robbins, (1961) “Chemical etching of silicon—III,” J. Electrochem. Soc., 108(4): 365–372

    Article  CAS  Google Scholar 

  45. Schwartz B., and H. R. Robbins, (1976) “Chemical etching of silicon—IV,” J. Electrochem. Soc., 123(12): 1903–1909

    Article  CAS  Google Scholar 

  46. Seidel H., L. Csepregi, A. Heuberger, and H. Baumgartel, (1990) “Anisotropic Etching of Crystalline Silicon in Alkaline Solution—Part I,” J. Electrochem. Soc., 137(11): 3612–3626

    Article  CAS  Google Scholar 

  47. Seidel H., L. Csepregi, A. Heuberger, and H. Baumgartel, (1990) “Anisotropic Etching of Crystalline Silicon in Alkaline Solution—Part II,” J. Electrochem. Soc., 137(11): 3626–3632

    Article  CAS  Google Scholar 

  48. Schumacher et al., (1994) “Mit Laser und Kalilauge,” Technische Rundschau, 86: 20–23

    Google Scholar 

  49. Lehmann and Foll, (1990) “Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon,” J. Electrochem. Soc., 137: 653–659

    Article  CAS  Google Scholar 

  50. Lehmann, (1993) “The Physics of Macropore Formation in Low Doped n-Type Silicon,” J. Electrochem. Soc., 140: 2836–2843

    Article  CAS  Google Scholar 

  51. Kloeck et al., (1989) “Study of Electrochemical Etch-Stop for High-Precision Thickness Control of Silicon Membranes,” IEEE Trans. Electron Devices, 36: 663–669

    Article  CAS  Google Scholar 

  52. http://www.mems-exchange.org/catalog/deep_rie/

    Google Scholar 

  53. Gianchandani Y., and K. Najafi, (1992) “A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices,” IEEE/ASME J. Micro Electro Mechanical Systems, 1(2): 77–85

    Article  CAS  Google Scholar 

  54. Shaw and MacDonald, (1996) “Integrating SCREAM Micromachined Devices with Integrated Circuits,” MEMS Workshop, 44–48

    Google Scholar 

  55. Keller and Ferrari, (1994) “Milli-Scale Polysilicon Structures,” 1994 Solid-State Sensors and Actuators Workshop, 312–137

    Google Scholar 

  56. Su Y. C., and L. Lin, (2004) “A Water-Powered Micro Drug Delivery System,” IEEE/ASME Journal of Microelectromechanical Systems, 13: 75–82

    Article  Google Scholar 

  57. Duffy D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, (1998) “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”, Anal. Chem., 70: 4974–4984

    Article  CAS  Google Scholar 

  58. Su Y. C., L. Lin, and A. P. Pisano, (2002) “A Water-Powered Osmotic Microacutator,” IEEE/ASME Journal of Microelectromechanical Systems, 11: 736–742

    Article  CAS  Google Scholar 

  59. Jo B. H., L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, (2002) “Three-Dimensional Micro-Channel Fabrication in Polydimethyl-siloxane (PDMS) Elastomer,” IEEE Journal of MEMS, 9: 76–81

    Article  Google Scholar 

  60. Nathanson et al., (1965) “A Resonant Gate Transistor with High-Q Bandpass Properties,” Appl. Phys. Lett., 7(4) 84–86

    Article  Google Scholar 

  61. Howe R. T., and R. S. Muller, (1983) “Polycrystalline silicon micromechanical beams,” J. of the Electrochemical Society, 130: 1420–1423

    Article  CAS  Google Scholar 

  62. Howe R. T., and R. S. Muller, (1986) “Resonant-microbridge vapor sensor,” IEEE Trans. on Electron Devices, ED-33: 499–506

    Article  CAS  Google Scholar 

  63. http://www.memscap.com/memsrus/crmumps.html

    Google Scholar 

  64. http://www.mdl.sandia.gov/mstc/technologies/micromachines/tech-info/technologies/ summit5.html

    Google Scholar 

  65. Lin L., A. P. Pisano, and R. T. Howe, (1997) “A Micro Strain Gauge with Mechanical Amplifier,” IEEE/ASME Journal of Microelectromechanical Systems, 6: 313–321

    Google Scholar 

  66. Mastrangelo C. H., and C. Hsu, (1993) “Mechanical Stability and Adhesion of Microstructures under Capillary Forces,” IEEE/ASME J. of Microelectromechanical Systems, 2: 44–55

    Article  CAS  Google Scholar 

  67. Maboudian R., (1998) Surf. Sci. Rep. 30: 207–269

    Article  CAS  Google Scholar 

  68. Fan L. S., Y. C. Tai, and R. S. Muller, (1988) “Integrated Movable Micromechanical Structures for Sensors and Actuators,” IEEE Trans. on Electron Devices, ED-35: 724–730

    Article  Google Scholar 

  69. Fan L. S., Y. C. Tai, and R. S. Muller, (1989) “IC-processed electrostatic micromotors,” Sensors and Actuators, 20: 41–48

    Article  Google Scholar 

  70. Tang W. C., T. C. H. Nguyen, M. W. Judy, and R. T. Howe, (1990) “Electrostatic-Comb Drive of Lateral Polysilicon Resonators,” Sensors and Actuators A, 21(1–3): 328–331

    Article  Google Scholar 

  71. Pister K. S. J., M. Judy, S. Burgett, and S. Fearing, (1992) “Microfabricated Hinges,” Sensors and Actuators, 33(3): 249–256

    Article  Google Scholar 

  72. Comtois J. H., and M. Victor, (1997) “Applications for surface-micromachined polysilicon thermal actuators and arrays,” Sensors and Actuators A, 58(1): 19–25

    Article  CAS  Google Scholar 

  73. Lin L., H. C. Chu, and Y. W. Lu, (1999) “A Simulation Program for the Sensitivity and Linearity of Piezoresistive Pressure Sensors,” IEEE/ASME Journal of Microelectromechanical Systems, 8: 514–522

    Article  Google Scholar 

  74. Antonsson E. K., (1995) “Structured Design Methods for MEMS,” NSF Sponsored Workshop on Structured Design Methods for MEM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, YC., Lin, L. (2012). MEMS Design. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_8

Download citation

Publish with us

Policies and ethics