Skip to main content

Microelectromechanical Sensors

  • Chapter

Abstract

Microelectromechanical sensors are miniature sensors made by micro fabrication technique, with typical characterization dimensions between nanometer and millimeter range. Micro sensors have attracted great attention because of their many merits and wide applications. They have experienced several significant stages in the last few decades, along with tremendous progress in fabrication technologies. The main advantages of microsensors are their capability of batch fabrication, low cost, small size, light weight, low power consumption, and ease for integration. In this chapter, the development of physical, chemical and biological microsensors are described, and the principles, fabrication techniques, properties and applications of several microsensors are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sze S. M., (1994) Semiconductor Sensors, John Wiley & Sons, Inc

    Google Scholar 

  2. Ristic L., (1994) Sensor Technology and Devices, Artech House

    Google Scholar 

  3. Frank R., (1996) Understanding Smart Sensors, Artech House

    Google Scholar 

  4. Gopel W., J. Hesse, and J. N. Zemel, (1995) Sensors, A Comprehensive Survey, Volume 8, Micro-and Nanosensor Technology/Trends in Sensor markets

    Google Scholar 

  5. Gardner W. J., V. K. Varadan, and O. O. Awadelkarim, (2001) Microsensors, MEMS, and Smart Devices, John Wiley & Sons, Inc

    Google Scholar 

  6. Clark, L. C., Jnr. C. Lyons, (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad. Sci., 102, 29–45

    CAS  Google Scholar 

  7. Greenwood, J. C., (1984) “Etched silicon vibrating sensor,” J. Phy. E. Sci. Instrum., 17: 650–652

    CAS  Google Scholar 

  8. Greeenwood, J., and T. Wray, (1993) “High Accuracy Pressure Measurement with a Silicon Resonant Sensor,” Sensors and Actuators A, 37–38: 82–85

    Google Scholar 

  9. Harada, K., et al., (1990) “Various Applications of Resonant Pressure Sensor Chip Based on 3-D Micromachining,” Sensors and Actuators, A73: 261–266

    Google Scholar 

  10. Ikeda, K., et al., (1990) “Silicon Pressure Sensor Integrates Resonant Strain Gauge on Diaphragm,” Sensors and Actuators, A21–23: 146–150

    Google Scholar 

  11. Petersen, K., et al., (1991) “Resonant Beam Pressure Sensor Fabricated with Silicon Fusion Bonding,” Proc. 6th Intl. Conf. on Solid State Sensors and Actuators (Transducers’ 91), San Francisco, CA, June 1991, 664–667

    Google Scholar 

  12. Welham, C. J., J. W. Gardner, and J. Greewood, (1995) “A Laterally Driven Micromachined Resonant Pressure Sensor,” Proc. 8th Int. Conf. on Solid State Sensors and Actuators (Transducers’ 95) and Eurosensors IX, Stockholm, Sweden, June 25–29, 586–589

    Google Scholar 

  13. Beeby S. P., et al., (2000) “Micromachined Silicon Resonant Strain Gauges Fabricated Using SOI Wafer Technology,” IEEE J. Microelectromechanical Systems, 9(1): 104–111

    CAS  Google Scholar 

  14. Melvås, P., E. Kälvesten, and G. Stemme, (2001) “A Surface Micromachined Resonant Beam Pressure Sensor,” IEEE J. Microelectromechanical Systems, 10(4): 498–502

    Google Scholar 

  15. Chen D., D. Cui, et. al., (2001) “Thermally excited SiN beam resonant pressure sensor,” Proceedings of SPIE, Vol. 4408, 2001, 548–554

    CAS  Google Scholar 

  16. Chen D., D. Cui, et. al., (2001) “SiN beam resonant pressure sensors using sacrificial porous silicon,” Proceedings of The International MEMS Workshop 2001, 4–6 July, 2001, Singapore, 673–677

    Google Scholar 

  17. Chen D., D. Cui, et. al., (2002) “SiN beam resonant pressure sensors with a novel structure,” Sensors, 2002. Proceedings of IEEE, 2: 994–997

    Google Scholar 

  18. Cui Z., D. Chen, S. Xia, (2002) “Modelling and Experiment of a Silicon Resonant Pressure Sensor,” Analog Integrated Circuits and Signal Processing, 32: 29–35

    Google Scholar 

  19. Chen D., D. Chen, et. al., (2009) “Design and modeling of an electromagnetically excited silicon nitride beam resonant pressure sensor,” Proceedings of IEEE NEMS 2009

    Google Scholar 

  20. Wang J., D. Chen, et al., (2008) “A novel method to eliminate the co-channel interference of micro-machined diffused silicon,” Sensors, 2008 IEEE, 395–398

    Google Scholar 

  21. Burrer C., J. Esteve, (1995) “A novel resonant silicon accelerometer in bulk-micromaching technology,” Sensors and Actuators, A4647: 185–189

    Google Scholar 

  22. Roessig T., R. Howe, A. Pisano, et al., (1997) “Surface-micromachined resonant accelerometer,” Proc. Ninth International Conference on Solid-State Sensors and Actuators, Transducers’97, 859–862

    Google Scholar 

  23. Seshia A., M. Palaniapan, T. Roessig, et. al., (2002) “A vacuum packaged surface micromachined resonant accelerometer,” Journal of Microelectro Mechanical Systems, 11(6): 784–793

    CAS  Google Scholar 

  24. Jia Y., Y. Hao, R. Zhang, (2005) “Bulk based resonant accelerometer,” Chinese Journal of Semiconductors, 26(2): 281–286

    Google Scholar 

  25. Chen D., J. Chen, et. al., (2006) “Design and modeling of a novel resonant silicon accelerometer,” Proceedings of 2006 Asia-Pacific Conference of Transducers and Micro-NanoTechnology (APCOT2006), 25–28, June, 2006, Singapore

    Google Scholar 

  26. Joseph Y., et al, (2005) “A Review of Biological, Biomimetic and Miniature Force Sensing for Microflight. Intelligent Robots and Systems,” 2005 IEEE/RSJ International Conference, 2–6 Aug. 2005, 3939–3946

    Google Scholar 

  27. Lee M. H., H. R. Nicholls, (1999) “Tactile sensing for mechatronics-a state of the art survey,” Mechatronics, 9: 1–33

    Google Scholar 

  28. Ozaki Y., T. Ohyama, T. Yasuda, and I. Shimoyama. (2000) “A gas flow sensor modeled on wind receptor hairs of insects,” Proc.MEMS 2000 (Miyazaki, Japan), 531–537

    Google Scholar 

  29. Chen J., Z. Fan, J. Zou, J. Enpl, and C. Liu, (2003) “Two dimensional micromachined flow sensor array for fluid mechanics studies,” Journal of Aerospace Engineering, 16(2): 85–97

    Google Scholar 

  30. Fan Z., J. Chen, J. Zou, D. Bullen, C. Liu, F. Delcomyn, (2002) “Design and fabrication of artificial lateral-line flow sensors,” J. Micromech. Microeng, 12: 655–661

    Google Scholar 

  31. Zhang H., E. So, (2002) “Hybrid resistive tactile sensing,” IEEE Trans. Syst. Man Cybernet, B32: 57–65

    Google Scholar 

  32. van Baar J., M. Rijkstru, R. Wiegerink, T. Lammerink, R. de Boer, and G. Krijnen, (2005) “Arrays of cricket-inspired sensory hairs with capacitive motion detection,” Micro Electro Mechanical Systems, 2005, MEMS 2005, 18th IEEE International Conference on 30 Jan–3 Feb. 2005, 646–649

    Google Scholar 

  33. Chen J., D. Chen, J. Wang, (2006) “Research on Resonant Low-Velocity Gas Flow Micro-sensor Based on Trichoid Sensillum of Insects”, 5th IEEE Conference on Sensors, 2006, 1065–1069

    Google Scholar 

  34. Horenstein M. N., P. R. Stone, (2001) “A micro-aperture electrostatic field mill based on MEMS technology,” Journal of Electrostatics, 51–52: 515–521

    Google Scholar 

  35. Harold K., et al, (2002) “On the Measurement of Stationary Electric Fields in Air,” IEEE Conference on Precision Electromagnetic Measurements, 524–525

    Google Scholar 

  36. Hsu C. H., and R. S. Muller, (1991) “Micromechanical electrostatic voltmeter,” IEEE International conference on Transducer’ 91, 659–662

    Google Scholar 

  37. Riehl P. S., K. L. Scott, R. S. Muller, R. T. Howe, J. A. Yasaitis, (2003) “Electrostatic Charge and Field Sensors Based on Micromechanical Resonators,” Journal of Microelectromechanical System, 12(5): 577–589

    Google Scholar 

  38. Peng C. R., X. X. Chen, C. Ye, H. Tao, G. P. Cui, Q. Bai, S. F. Chen, and S. H. Xia, (2006) “Design and Testing of a Micromechanical Resonant Electrostatic Field Sensor,” Journal of Micromechanics and Microengineering, 16: 914–919

    Google Scholar 

  39. Chen X., C. Peng, H. Tao, C. Ye, Q. Bai, S. Chen, and S. Xia, (2006) “Thermally driven microelectrostatic fieldmeter,” Journal of Sensors and Actuators A, 132(2): 677–682

    CAS  Google Scholar 

  40. Ye C., C. R. Peng, X. X. Chen, S. H. Xia, (2006) “A micromachined Electrostatic Field Sensor with Vertical thermal actuation,” IEEE SENSOR 2006 Conference, 1419–1421

    Google Scholar 

  41. Peng C., X. Chen, Q. Bai, L. Luo, and S. Xia, (2006) “A novel high performance micromechanical resonant electrostatic field sensor used in atmospheric electric field detection,” Proceedings of the 19th IEEE Micro Electro Mechanical Systems Conference, MEMS 2006, Istanbul, Turkey, January 2006, 698–701

    Google Scholar 

  42. Gianchandani Y. B., K. Najafi, (1996) “Bent-Beam Strain Sensors,” Journal of Microelectromechanical Systems, 5: 52–58

    Google Scholar 

  43. Que L., J. S. Park, and Y. B. Gianchandani, (1999) “Bent-beam electro-thermal actuators for high force applications,” Proc. IEEE Conf. on Micro Electro Mechanical Systems, Orlando, Florida, America, Jan. 1999, 31–36

    Google Scholar 

  44. Que L., J. S. Park, Y. B. Gianchandani, (2001) “Bent-Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices,” Journal of Microelctromechanical Systems, 10: 247–254

    CAS  Google Scholar 

  45. Yan D., A. Khajepour, and R. Mansour, (1955) “Design and modeling of a MEMS bidrectional vertical thermal,” Phil. Trans. Roy. Soc. London, A247: 529–551

    Google Scholar 

  46. David K., C. Allen, and M. Ramaswamy, et al., PolyMUMPs Design Handbook, Rev. 10.0, http://www.memscap.com

    Google Scholar 

  47. Qinghai W., K. M. Lee, and C. C. Liu, (1992) “Development of chemical sensors using microfabrication and micromaching techniques,” The fourth international meeting on chemical sensors, Tokyo, 2–5

    Google Scholar 

  48. Fung S. K. H., Z. Tang, P. C. H. Chan, J. K. O. Sin, P. W. Cheung, (1996) “Thermal analysis and design of a micro-hotplate for integrated gas sensor applications,” Sensors and Actuators A, 54: 482–467

    CAS  Google Scholar 

  49. Semancik S., R. E. Cacicchi, M. C. Wheller, et al., (2001) “Microplate platforms for chemical sensor research,” Sensors and Actuators B, 77: 579–591

    CAS  Google Scholar 

  50. Udrea L., J. W. Gardner, (1996) “Design of a silicon mircosensor array device for gas analysis,” Microelectronics Journal, 27: 449–457

    CAS  Google Scholar 

  51. Lee D. D., W. Y. Chung, M. S. Choi, et al., (1996) “Low-power micro gas sensor,” Sensors and Actuators B, 33: 147–150

    CAS  Google Scholar 

  52. Hellmich W., G. Muller, C. B. Braunmuhl, et al., (1997) “Field-effect-induced gas sensitivity changes in metal oxides,” Sensors and Actuators B, 43: 132–139

    CAS  Google Scholar 

  53. Courbat J., D. Briand, N. F. de Rooij, (2007) “Reliability improvement of suspended platinum-based, micro-heating elements,” Sensors and Actuators A, 142: 284–291

    Google Scholar 

  54. HE X. L., J. P. LI, X. G. GAO, W. Li, (2003) “NO2 sensing characteristics of WO3 thin film microgas sensor,” Sensors and Actuators B, 93: 463–467

    CAS  Google Scholar 

  55. Gardner J. W., P. N. Bartlet, (1999) “Electronic Noses Principles and Applications,” London: Oxford University Press

    Google Scholar 

  56. Gardner J. W., P. N. Bartlett, (1994) “A brief history of electronic noses,” Sensors and Actuators B, 18–19: 211–220

    Google Scholar 

  57. Snopok B. A., I. V. Knuglenko, (2002) “Multisensor systems for chemical analysis: state-of-the-art in electronic nose technology and new trends in machine olfaction,” Solid Films, 418: 21–41

    CAS  Google Scholar 

  58. Zee F., J. W. Judy, (2001) “Micromachined polymer-based chemical gas sensor array,” Sensors and Actuators B, 72: 120–128

    CAS  Google Scholar 

  59. Hong H. K., H. W. Shin, H. S. Park, et al., (1996) “Gas identification using micro gas sensors array and neural-network pattern recognition,” Sensors and Actuators B, 33: 68–71

    CAS  Google Scholar 

  60. Mo Y. W., Y. Okawa, M. Tajima, et al., (2001) “Micro-machined gas sensor array based on metal film micro-heater,” Sensors and Actuators B, 79: 175–181

    CAS  Google Scholar 

  61. S. C. Ha., Y. Yang, Y. S. Kim, S. H. Kim, Y. J. Kim, S. M. Cho, (2005) “Environmental temperature-independent gas sensor array based on polymer composite,” Sensors and Actuators B, 108: 258–264

    Google Scholar 

  62. Hagleitner C., A. Hierlemann, D. Lange, et al., (2001) “Smart single-chip gas sensor microsystem,” Nature, 414(15): 293–296

    CAS  Google Scholar 

  63. Afridi M., A. Hefner, D. Berning, C. Ellenwood, A. Varma, B. Jacob, S. Semancik, (2004) “MEMS-based embedded sensor virtual components for system-on-a-chip (SoC),” Solid-State Electronics, 48: 1777–1781

    CAS  Google Scholar 

  64. Guo B., A. Bermak, P. C. H. Chan, G. Z. Yan, (2007) “A monolithic integrated 4×4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits,” Solid-State Electronics, 51(1): 69–76

    CAS  Google Scholar 

  65. Comini E., G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, (2005) “Tin oxide nanobelts electrical and sensing properties,” Sensors and Actuators B, 111–112: 2–6

    Google Scholar 

  66. Xu C. N., J. Tamaki, N. Miura, and N. Yamazoe, (1991) “Grain size effects on gas sensitivity of porous SnO2-based elements,” Sensors and Actuators B, 3: 147–155

    CAS  Google Scholar 

  67. Yamazoe N., (1991) “New Approaches for improving semiconductor gas sensors,” Sensors and Actuators B, 5: 7–19

    CAS  Google Scholar 

  68. Lyons J., K. Jim, (2004) “Electrospinning: Past, Present & Future,” Textile World, 154(8): 46–48

    Google Scholar 

  69. Guan H., C. Shao, B. Chen, et al., (2003) “A novel method for making CuO superfine fibres via an electrospinning technique,” Inorganic Chemistry Communications, 6: 1409–1411

    CAS  Google Scholar 

  70. Li D., Y. Xia, (2004) “Electrospinning of nanofibers: reinventing the wheel,” Advanced Materials, 16(14): 1151–1170

    CAS  Google Scholar 

  71. Dharmaraj N., C. H. Kim, K. W. Kim, H. Y. Kim, E. K. Suh, (2006) “Spectral studies of SnO2 nanofibers prepared by electrospinning method,” Spectrochim. Acta A, 64: 136–140

    CAS  Google Scholar 

  72. Yang X. H., C. L. Shao, H. Y. Guan, X. L. Li, J. Gong, (2004) “Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor,” Inorg. Chem. Commun., 7: 176–178

    CAS  Google Scholar 

  73. Liu H. Q., J. Kameoka, D. A. Czaplewski, H. G. Craighead, (2004) “Polymeric nanowire chemical sensor,” Nano Lett., 4: 671–675

    CAS  Google Scholar 

  74. Kessick R., G. Tepper, (2006) “Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds,” Sens. Actuators B, 117: 205–210

    CAS  Google Scholar 

  75. Kim I. D., A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, (2006) “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett., 6: 2009–2013

    CAS  Google Scholar 

  76. Wang G., Y. Ji, X. R. Huang, X. Q. Yang, P. I. Gouma, M. Dudley, (2006) “Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing,” J. Phys. Chem. B, 110: 23777–23782

    CAS  Google Scholar 

  77. Zhang Y., X. L. He, J. P. Li, Z. J. Miao, F. Huang, (2008) “Fabrication and ethanolsensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors and Actuators B, 132: 67–73

    CAS  Google Scholar 

  78. Palaniappan A., X. Su, F. Tay, (2006) “Functionalized mesoporous silica films for gas sensing applications,” J. Electroceramics, 16: 503–505

    CAS  Google Scholar 

  79. Yamada T., H. Zhou, H. Uchida, M. Tomita, Y. Ueno, I. Honma, K. Asai, T. Katsube, (2002) “Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system, ” Micropor. Mespor. Mater, 54: 269–276

    CAS  Google Scholar 

  80. Lau K. H. A., L. S. Tan, K. Tamada, M. S. Sander, W. Knoll, (2004) “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Phys. Chem. B, 108: 10812–10818

    CAS  Google Scholar 

  81. Lazarowich R. J., P. Taborek, B. Y. Yoo, N. V. Myung, (2007) “Fabrication of porous alumina on quartz crystal microbalances,” J. Appl. Phys., 101: 104909 (1–7)

    Google Scholar 

  82. Varghese O. K., D. Gong, W. R. Dreschel, K. G. Ong, C. A. Grimes, (2003) “Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors,” Sens. Actuators B, 94: 27–35

    CAS  Google Scholar 

  83. Palaniappan A., X. Li, F. Tay, J. Li, X. Su, (2006) “Cyclodextrin functionalized mesoporous silica films on quartz crystal microbalance for enhanced gas sensing,” Sens. Actuators B, 119: 220–226

    CAS  Google Scholar 

  84. Lin V. S. Y., K. Motesharei, K. S. Dancil, M. J. Sailor, M. R. Ghadiri, (1997) “A Porous silicon-based optical interferometric biosensor,” Science, 278: 840–843

    CAS  Google Scholar 

  85. Gao J., T. Gao, M. J. Sailor, (2000) “Porous-silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett., 77: 901–903

    CAS  Google Scholar 

  86. Qi Z. M., I. Honma, H. Zhou, (2007) “Nanoporous leaky waveguide based chemical and biological sensors with broadband spectroscopy,” Appl. Phys. Lett. 90: 011102 (1–3)

    Google Scholar 

  87. Qi Z. M., I. Honma, H. Zhou, (2006) “Ordered-mesoporous-silica-thin-film-based chemical gas sensor with integrated optical polarimetric interferometry,” Appl. Phys. Lett., 88: 053503 (1–3)

    Google Scholar 

  88. Qi Z. M., I. Honma, H. Zhou, (2006) “Chemical gas sensosr application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry,” Anal. Chem., 78: 1034–1041

    CAS  Google Scholar 

  89. Teoh L. G., I. M. Hung, J. Shieh, W. H. Lai, M. H. Hon, (2003) “High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film,” Electrochemical and Solid-State Lett., 6: G108–G111

    CAS  Google Scholar 

  90. Fiorilli S., B. Onida, D. Macquarrie, E. Garrone, (2004) “Mesoporous SBA-15 silica impregnated with reichard’s dye: a material optically responding to NH3,” Sens. Actuators B, 100: 103–106

    CAS  Google Scholar 

  91. Gong J., W. Fei, S. Seal, Q. Chen, (2004) “Nanocrystalline Mesoporous SMO thin films prepared by sol-gel process for MEMS based hydrogen sensor,” Proc. of SPIE, 5346: 48–55

    CAS  Google Scholar 

  92. Qi Z. M., K. Itoh, M. Murabayashi, H. Yanagi, (2000) “A composite optical waveguidebased polarimetric interferometer for chemical and biological sensing applications,” J. Lightwave Technol., 18: 1106–1110

    CAS  Google Scholar 

  93. Qi Z. M., I. Honma, H. Zhou, (2006) “Fabrication of ordered mesoporous thin films for optical waveguiding and interferometric chemical sensing,” J. Phys. Chem. B, 110: 11590–11594

    Google Scholar 

  94. Qi Z. M., M. Wei, I. Honma, H. Zhou, (2006) “Sensitive slab optical waveguides composed of mesoporous metal-oxide thin films on the tin-diffused layers of float glass substrates,” J. Appl. Phys., 100: 083102 (1–7)

    Google Scholar 

  95. Miller L. M., M. I. Tejedor, B. P. Nelson, M. A. Anderson, (1999) “Mesoporous Metal Oxide Semiconductor-Clad Waveguides,” J. Phys. Chem. B, 103: 8490–8492

    CAS  Google Scholar 

  96. Oh S., J. Moon, T. Kang, S. Hong, J. Yi, (2006) “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B, 114: 1096–1099

    CAS  Google Scholar 

  97. Alvarez-Herrero A., R. L. Heredero, E. Bernabeu, D. Levy, (2001) “Adsorption of water on porous Vycor glass studied by ellipsometry,” Appl. Opt. 40: 527–532

    CAS  Google Scholar 

  98. Compiled by A. D. McNaught and A. Wilkinson, IUPAC. (1997) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”), Blackwell Scientific Publications, Oxford

    Google Scholar 

  99. Clark, L. C. Jnr. (1962) Ann. NY Acad. Sci. 102: 29–45

    CAS  Google Scholar 

  100. Turner, A. P. F. (1991), (1992), (1993), (1995) “Advances in Biosensors”, I; II; Suppl. I; III, JAI Press, London, UK

    Google Scholar 

  101. Bergveld P., “Development of an ion-sensitive solid state device for neurophysiological measurements,” IEEE Trans. Bio-Med. Eng. BME-17, (1970): 70–71

    Google Scholar 

  102. Martinoia S., G. Massobrio, (2000) “A behavioral macromodel of the ISFET in SPICE,” Sens. Actuators B, 62: 182–189

    CAS  Google Scholar 

  103. Mundt C. W., H. T Nagle, (2000) “Applications of SPICE for modeling miniaturized biomedical sensor systems,” IEEE Trans. Biomed. Eng. BME, 47: 149–154

    CAS  Google Scholar 

  104. Sun H. G., J. H. Han, J. B. Wei, S. H. Xia, (2005) “A pH-ISFET Based Micro Sensor System on Chip,” China Mechanical Engineering, 16(z1), 176–178 (in Chinese)

    Google Scholar 

  105. Wang Z. M., H. G. Sun, J. H. Han, H. G. Yang, S. H. Xia, (2006) “A Novel Fully Integrated Chip System With Ptfe-refet,” Asia-Pacific Conference of Transducers and Micro-Nano Technology (APCOT)

    Google Scholar 

  106. Wang Z. M., J. H. Han, Z. X. Ren, C. Bian, S. H. Xia, (2007) “Characteristics of the PPY Material as pH Sensitive Membrane,” Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Jan. 16–19, 2007, Bangkok, Thailand

    Google Scholar 

  107. Liu Y., A. G. Erdman, T. H. Cui, (2007) Sens. Actuators A: Phys., 136(2): 540–545

    CAS  Google Scholar 

  108. Qu L., S. H. Xia, C. Bian, J. Z Sun, J. H. Han, (2008) “A Micro Potentiometric Hemoglobin Immunosensor Based On Electropolymerized Polypyrrole-Gold Nanoparticles Composite, Biosensors & Bioelectronics,” doi: 10.1016/j.bios.2008.07.077

    Google Scholar 

  109. Bunn H. F., D. N. Haney, S. Kamin, K. H. Gabbay, P. M. Gallop, (1976) J. Clin. Invest. 57: 1652–1659

    CAS  Google Scholar 

  110. McDonald J. M., J. E. Davis, (1979) Hum. Pathol. 10: 279–291

    CAS  Google Scholar 

  111. Wei J. B., H. G. Yang, H. G. Sun, Z. J. Lin, S. H. Xia, (2006) Rare Metal Mat. Eng. 35(suppl.3), 443–446

    CAS  Google Scholar 

  112. Li Y., G. Q. Shi, (2005) J. Phys. Chem. B 109(50): 23787-23793

    Google Scholar 

  113. Xue M., T. Haruyama, E. Kobatake, M. Aizawa, (1996) Sens. Actuators B 36: 458

    CAS  Google Scholar 

  114. Jie M., C. Y. Ming, D. Jing, L. S. Cheng, L. H. Na, F. Jun, C. Y. Xiang, (1999) Electrochem. Commun. 1: 425

    Google Scholar 

  115. Zhang L., R. Yuan, X. Huang, Y. Chai, S. Cao, (2004) Electrochem. Commun. 6: 1222

    CAS  Google Scholar 

  116. Yu H., F. Yan, Z. Dai, H. Ju, (2004) Anal. Biochem. 331: 98

    CAS  Google Scholar 

  117. Dai Z., F. Yan, J. Chen, H. Ju, (2003) Anal. Chem. 75: 5429

    CAS  Google Scholar 

  118. Ionescu R. E., C. Gondran, L. A. Gheber, S. Cosnier, R. S. Marks, (2004) Anal.Chem. 76: 6808

    CAS  Google Scholar 

  119. Danilowicz C., J. M. Manrique, (1999) Electrochem. Commun. 1: 22

    CAS  Google Scholar 

  120. Darain F., Park S., Shim Y. B., (2003) Biosensors and Bioelectronics, 18(5/6): 773

    CAS  Google Scholar 

  121. Li J., Xiao L. T., Zeng G. M., et al., (2003) Analytica Chimica Acta, 494(1/2): 177

    Google Scholar 

  122. Fernández-Sánchez C., González-Garciá M. B., Costa-Garciá A., (2000) Biosensors and Bioelectronics [J], 14(12): 917

    Google Scholar 

  123. Bian C., S. H. Xia, Y. Y. Xu, S. F. Chen, Z. Cui, “A micro amperometric immunosensor based on two electrochemical layers for immobilizing antibody,” The 4th IEEE Conference On Sensors Proceedings, USA, 416–419

    Google Scholar 

  124. Tang D., R. Yuan, Y. Chai, J. Dai, X. Zhong, Y. Liu, (2004) Bioelectrochemistry, 65: 15

    CAS  Google Scholar 

  125. Xu W., S. Xu, X. Ji, B. Song, H. Yuan, L. Ma, Y. Bai, (2005) Colloids Surf, B: Biointerfaces, 40: 169

    CAS  Google Scholar 

  126. Ren C., Y. Song, Z. Li, G. Zhu, (2005) Anal. Bioanal. Chem., 381: 1179

    CAS  Google Scholar 

  127. Wang L., E. Wang, (2004) Electrochem. Commun., 6: 225

    CAS  Google Scholar 

  128. Tang D. P., R. Yuan, Y. Q. Chai, X. Zhong, Y. Liu, J. Y. Dai, (2004) Biochem.Eng. J., 22: 43

    CAS  Google Scholar 

  129. Xu S. Y., X. Z. Han, (2004) Biosens. Bioelectron., 19: 1117

    CAS  Google Scholar 

  130. Zhang C., Z. Y. Zhang, B. B. Yu, J. J. Shi, X. R. Zhang, (2002) Anal. Chem., 74: 96

    CAS  Google Scholar 

  131. Thanh N. T. K., Z. Kosenzweig, (2002) Anal. Chem., 74: 1624

    CAS  Google Scholar 

  132. Lei C. X., F. C. Gong, G. L. Shen, R. Q. Yu, (2003) Sens. Actuators B, 96: 582

    CAS  Google Scholar 

  133. Xu Y. Y., C. Bian, S. F. Chen, S. H. Xia, (2006) “A microelectronic technology based amperometric immunosensor for α-fetoprotein using mixed self-assembled monolayers and gold nanoparticles,” Analytica Chimica Acta, 561(1–2): 48–54

    CAS  Google Scholar 

  134. Mandal S., S. Phadtare, M. Sasiry, (2005) Curr. Appl. Phys., 5: 118

    Google Scholar 

  135. Sun J. L., S. H. Xia, C. Bian, L. Qu, “A new method based on electropolymerizing Staphylococcal Protein A to immobilize antibody in micro amperometric immunosensor,” Advanced Material Research, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xia, S. et al. (2012). Microelectromechanical Sensors. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_7

Download citation

Publish with us

Policies and ethics