Skip to main content
  • 4269 Accesses

Abstract

The first research on MEMS can be traced all the way back to the 50’s[1]. In the 80’s, there was a burst of MEMS using semiconductor materials. In the 90’s, MEMS was formally an emerging technology. Today, MEMS has grown to be a big field with hectic international competition on many commercial applications. Without doubt, MEMS is already ubiquitous, but various new MEMS devices are continuing to show up. There is no end in sight as we continue to see MEMS branch into new fields and applications. At the same time, though, there is still much to do with both science and technology issues because of its ‘multidisciplinary’ and ‘system’ nature. MEMS is becoming more exciting than ever considering its bright long-term prospects going into BioMEMS and NEMS. There is no doubt that MEMS will be a key factor for bridging our world into nanotechnology. The best day for MEMS is yet to come with a continuous drive to make our life smaller, cheaper, and better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Method of preparing electrostatic shutter mosaics, (1956), US Patent 2,749,598

    Google Scholar 

  2. Petersen K. E., (1982), “Silicon as a mechanical material,” Proceeding of the IEEE, 5: 420–457, May

    Article  Google Scholar 

  3. Wolf S., and R. N. Tauber, Silicon Processing for the VLSI Era, Volume 1–3, Lattice Press

    Google Scholar 

  4. Chang C. Y. and S. M. Sze, (1996), “ULSI Technology,” McGraw-Hill Book Co

    Google Scholar 

  5. Kovacs G. T. A., N. I. Maluf, and K. E. Petersen, (1998) “Bulk Micromachining of Silicon,” Proc IEEE, 86(8): 1536–1551

    Article  CAS  Google Scholar 

  6. Robbins H. and B. Schwartz, (1959) “Chemical etching of silicon, II. The system HF, HNO3, HC2H3O2,” J. Electrochem. Soc., 106: 505

    Article  CAS  Google Scholar 

  7. Schwartz B. and H. Robbins, (1976), “Chemical etching of silicon, VI. Etching technology,” J. Electrochem. Soc., 123: 1903

    Article  CAS  Google Scholar 

  8. Williams K. R. and R. S. Muller, (1996), “Etch rate for micromachining process,” J. Microelectromech. Syst., 5(4): 256–269

    Article  CAS  Google Scholar 

  9. Winters H. F. and J. W. Coburn, (1979), “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett., 34(1): 70–73

    Article  CAS  Google Scholar 

  10. Wang X. Q., X. Yang, K. Walsh, and Y.C Tai, (1997), “Gas Phase Silicon Etching with Bromine Trifluoride,” Proceedings, Transducer, 97

    Google Scholar 

  11. Price J. B., (1973), “Anisotropic etching of silicon with potassium hydroxide-waterisopropyl alcohol,” in Semiconductor Silicon, H. R. Huff and R. R. Burgess, Eds. Princeton, NJ: Electrochemical Society, 1973: 339

    Google Scholar 

  12. Bean K. E., (1978), “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, ED-25: 1185–1193

    Google Scholar 

  13. Seidel H., L. Csepregi, A. Heuberger, et al., (1990), “Anisotropic etching of crystalline silicon in alkaline-solutions. 1. Orientation dependence and behavior of passivation layers,” J Electrochem Soc., 137(11): 3612–3626

    Article  CAS  Google Scholar 

  14. Seidel H., L. Csepregi, A. Heuberger, et al., (1990), “Anisotropic etching of crystalline silicon in alkaline-solutions. 2. Influence of dopants,” J Electrochem Soc., 137(11): 3626–3632

    Article  CAS  Google Scholar 

  15. Finne R. M. and D. L. Klein, (1967), “A water-amine-complexing agent system for etching silicon,” J Electrochem Soc., 114(11): 965

    Article  CAS  Google Scholar 

  16. Moser D., (1993), “CMOS flowsensors,” Doctoral dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland

    Google Scholar 

  17. Tabata O., R. Asahi, H. Funabash, K. Shimaoka, and S. Sugiyama, (1992), “Anisotropic etching of silicon in TMAH solutions,” Sensors and Actuators A, 34(1): 51–57

    Article  CAS  Google Scholar 

  18. Merlos A., M. Acero, M. H. Bao, J. Bausells, and J. Esteve, (1993), “TMAH/IPA anisotropic etching characteristics,” Sensors and Actuators, A37–38: 737–743

    Google Scholar 

  19. Schnakenberg U., W. Benecke, and B. Lochel, (1990), “NH4OH-based etchants for silicon micromachining,” Sensors and Actuators, A23(1–3): 1031–1035

    Google Scholar 

  20. Raley N. F., Y. Sugiyama, and T. Van Duzer, (1984), “(100) silicon etching rate dependence on boron concentration in ethylenediamine pyrocatechol water solutions,” J Electrochem Soc., 131(11): 161–171

    Article  CAS  Google Scholar 

  21. Jackson T. N., M. A. Tischler, and K. D. Wise, (1981), “An electrochemical p-n junction etch-stop for the formation of silicon microstructure,” IEEE Electron Device Letters, EDL-2(2): 44–45

    Article  CAS  Google Scholar 

  22. Coburn J. W. and H. F. Winters, (1979), “Plasma etching—A discussion of mechanisms,” J. Vac. Sci. Technology., 16(2): 391–403

    Article  CAS  Google Scholar 

  23. Schwartz G. C. and P. M. Schaible, (1979), “Reactive ion etching of silicon,” J. Vac. Sci. Technol., 16(2): 410–413

    Article  CAS  Google Scholar 

  24. Murakami K., Y. Wakabayashi, K. Minami, and M. Esashi, (1993), “Cryogenic dry etching for high aspect ratio microstructures,” in Proc. IEEE MEMS Conf., Fort Lauderdale, FL., 65–70

    Google Scholar 

  25. Klaassen E. H., K. Petersen, J. M. Noworolski, et al., (1995), “Silicon fusion bonding and deep reactive ion etching: A new technology for microstructures,” in Dig. Tech. Papers transducers’95/Eurosensors IX, Stockholm, Sweden, June 25–29, 1: 556–559

    Google Scholar 

  26. Barth P. W., (1990), “Silicon fusion bonding for fabrication of sensors, actuators and microstructures,” Sensors and Actuators A, 23(1–3): 919–926

    Article  Google Scholar 

  27. Rogers T. and J. Kowal, (1995), “Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors,” Sensors and Actuators, A 46(1–3): 113–120

    Article  CAS  Google Scholar 

  28. Reynaerts D., P. H. Heeren, and H. Van Brussel, (1997), “Microstructuring of silicon by electro-discharge machining (EDM)—part I: theory,” Sensors & Actuators, A 60(1–3): 212–218

    Article  CAS  Google Scholar 

  29. Heeren P. H., D. Reynaerts, H. Van Brussel, C. Beuret, O. Larsson, and A. Bertholds, (1997), “Microstructuring of silicon by electro-discharge machining (EDM)—part II: applications,” Sensors & Actuators, A 61 (1–3): 379–386

    Article  CAS  Google Scholar 

  30. Bloomish T. M. and D. J. Ehrlich, “Laser Stereo Micromachining at one-half million cubic micrometers per second,” Solid-state Sensors and Actuators Workshop, Technical Digest, June 13–16, Hilton Head, NC, 142–144

    Google Scholar 

  31. Gabriel K., J. Jarvis, and W. Trimmer, (1988), “Small Machines, Large Opportunities: A report on the emerging field of microdynamics,”

    Google Scholar 

  32. Nathanson H. C., W. E. Newell, R. A. Wickstrom, and J. R. Davis, Jr., (1967), “The Resonant Gate Transistor,” IEEE Transactions on Electron Devices, ED-14(3): 117–133

    Article  Google Scholar 

  33. Tai Y. C. and R. S. Muller, (1987), “Lightly doped polysilicon bridge as an anemometer,” Tech. Digest, Transducers’ 87, 4th Int. Conf. On Solid-state Sensors and Actuators, Tokyo, Japan, 360–363

    Google Scholar 

  34. Chen P., R. S. Muller, T. Shiosaki, and R. M. White, (1979), “Silicon cantilever beam accelerometer utilizing a PI-FET capacitive transducer,” IEEE Trans. Electron Devices, ED-26: 1857

    Article  Google Scholar 

  35. Fan L. S., Y. C. Tai, and R. S. Muller, (1988), “IC-processed electrostatic micromotor,” Technical Digest, IEEE International Electron Device Meeting (IEDM), 666–669

    Google Scholar 

  36. Tang W. C., T. C. H. Nguyen, and R.T. How, (1989), “Laterally driven for polysilicon resonate microstructures,” Sensor and Actuators, 20: 25–32

    Article  Google Scholar 

  37. Bustillo J. M., R. T. Howe and R. S. Muller, (1998), “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, 86(8): 1552–1574

    Article  CAS  Google Scholar 

  38. Fan L. S., Y. C. Tai, and R. S. Muller, (1988), “Integrated movable micromechanical structures for sensors and actuators,” IEEE Trans. Electron Devices, ED-35: 724–730

    Article  Google Scholar 

  39. Liu J. Q., Y. C. Tai, J. Lee, K. C. Pong, Y. Zohar, and C. M. Ho, (1993), “In Situ Monitoring and Universal Modelling of Sacrificial PSG Etching Using Hydrofluoric Acid,” Proceedings, IEEE Micro Electro Mechanical Systems Workshop (MEMS’ 93), Fort Lauderdale, FL, 71–76, Feb. 7–10, 1993

    Google Scholar 

  40. Schmidt M. A., R. T. Howe, S. D. Senturia, and J. H. Haritonidis, (1998), “Design and Calibration of a Microfabricated Floating-Element Shear-Stress Sensor,” IEEE Transactions on Electron Devices, 35(6): 750–757

    Article  Google Scholar 

  41. Tabata O., H. Funabashi, K. Shimaoka, R. Asahi, and S. Sugiyama, (1991), “Surface micromachining using polysilicon sacrificial layer”, the Second International Symposium on Micromachine and Human Science, 1991, Japan

    Google Scholar 

  42. Frazier A. B. and M. G. Allen, (1992), “High Aspect Ratio Electroplated Microstructures Using a Photosensitive Polyimide Process,” Proceedings of IEEE MEMS 92, February 87–92

    Google Scholar 

  43. Storment C., D. Borkholder, V. Westerlind, J. Suh, N. Maluf, and G. Kovacs, (1994), “Dry-released process for aluminum electrostatic actuators,” Technical Digest, Solid-state Sensor and actuator Workshop, Hilton Head Island, 1994, 95–98

    Google Scholar 

  44. Man P., D. Jones and C. Mastrangelo, (1997), “Microfluidic Plastic Capillaries on Silicon Substrates: A new inexpensive technology for bio analysis chips,” Proceedings, IEEE MEMS Meeting, Nagoya, Japan, 1997, 311–316

    Google Scholar 

  45. Tsao T. R., T. Y. Hsu, and Y. C. Tai, (1996), “Copper Sacrificial Layer Technology for use in Surface Micromachining,” SCCAVS Micromachining Workshop III, September 1996

    Google Scholar 

  46. Becker E. W., W. Ehrfeld, D. Munchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H. J. Michel, and V. R. Siemens, (1982), “Production of Separation Nozzle Systems for Uranium Enrichment by Combination of X-Ray Lithography and Galvanoplastics. Naturwissenschaften,” 69: 520–523

    Article  Google Scholar 

  47. Strohrmann M., P. Bley, O. Fromhein, and J. Mohr, (1994), “Acceleration Sensor with Integrated Compensation of Temperature Effects Fabricated by the LIGA Process,” Sensors and Actuators, A 42(1–3): 426–429

    Article  Google Scholar 

  48. Rogner A., W. Ehrfled, D. Münchmeyer, P. Bley, C. Burbaum, and J. Mohr, (1991), “LIGA-based flexible microstructures for fiber chip coupling,” Journal of Micromechanics and Microengineering, 1(3): 167–170

    Article  Google Scholar 

  49. Schomburg W. K., J. Vollmer, B. Büstgens, J. Fahrenberg, H. Hein, and W. Menz, (1994), “Microfluidic components in LIGA technique,” Journal of Micromechanics and Microengineering, 4(4): 186–191

    Article  Google Scholar 

  50. Wallis G. and D. I. Pomerantz, (1969), “Field Assisted Glass-Metal Sealing,” Journal of Applied Physics, 40(10): 3946–3949

    Article  CAS  Google Scholar 

  51. Harendt C., W. Appel, H. G. Graf, B. Höfflinger, and E. Penteker, (1991), “Wafer fusion bonding and its application to silicon-on-insulator fabrication,” Journal of Micromechanics and Microengineering, 1(3): 145–151

    Article  CAS  Google Scholar 

  52. Harendt C., H. G. Graf, B. Höfflinger, and E. Penteker, (1992), “Silicon fusion bonding and its characterization,” Journal of Micromechanics and Microengineering, 2(3): 113–116

    Article  CAS  Google Scholar 

  53. Hanneborg A., M. Nese, and P. Øhlckers, (1991), “Silicon-to-silicon anodic bonding with a borosilicate glass layer,” Journal of Micromechanics and Microengineering, 1(3): 139–144

    Article  CAS  Google Scholar 

  54. Cozma A. and B. Puers, (1995), “Characterization of the electrostatic bonding of silicon and Pyrex glass,” Journal of Micromechanics and Microengineering, 5(2): 98–102

    Article  CAS  Google Scholar 

  55. Obermeier E., (1995), “Anodic Wafer Bonding,” Electrochemical Society Proceedings, 95-7: 212–220

    CAS  Google Scholar 

  56. Ko W. H., J. T. Suminto, and G. J. Yeh, (1985), “Bonding Techniques for Microsensors, in Micromachining and Micropackaging of Transducers,” C.D. Fung, P.W. Cheung, W.H. Ko, and D.G. Fleming, Editors, Elsevier Science Publishing Company Inc. 41–61

    Google Scholar 

  57. Masaki T., K. Kawata, and T. Masuzawa, (1990), “Micro Electro-Discharge Machining and its Applications,” in MEMS’ 90, Napa Valley, CA, 21–26

    Google Scholar 

  58. Takahata K., S. Aoki, and T. Sato, (1997), “Fine Surface Finishing Method for 3-Dimensional Micro Structures,” IEICE Transactions on Electronics, E80C(2): 291–296

    Google Scholar 

  59. Müllenborn M., H. Dirac, J. W. Petersen, and S. Bouwstra, (1996), “Fast threedimensional laser micromachining of silicone for Microsystems,” Sensors and Actuators, A 52(1–3): 121–125

    Article  Google Scholar 

  60. Ikuta K. and K. Hirowatari, (1993), “Real Three Dimensional Micro Fabrication Using Stereo Lithography and Metal Molding,” in MEMS’ 93, Fort Lauderdale, FL, 42–47

    Google Scholar 

  61. Ikuta K., K. Hirowatari, and T. Ogata, (1994), “Three Dimensional Micro Integrated Fluid Systems (MIFS) Fabricated By Stereo Lithography,” in MEMS’ 94, Oiso, Japan, 1–6

    Google Scholar 

  62. Larsson O., O. Öhman, Å. Billman, L. Lundbladh, C. Lindell, and G. Palmskog, “Silicon Based Replication Technology of 3D-Microstructures by Conventional CD-Injection Molding Techniques,” in Transducers’ 97, Chicago, IL, 1415–1418

    Google Scholar 

  63. Despa M. S., K. W. Kelly, and J. R. Collier, “Injection molding of polymeric LIGA HARMs,” Microsystem Technologies, 6(2): 60–66

    Google Scholar 

  64. Becker H. and U. Heim, (2000), “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors & Actuators, A 83(1–3): 130–135

    Google Scholar 

  65. Heckele M., W. Bacher, and K. D. Müller, (1998), “Hot embossing — The molding technique for plastic microstructures,” Microsystem Technologies, 4(3): 122–124

    Article  Google Scholar 

  66. Xia Y. N., and G. M. Whitesides, (1998), “Soft lithography,” Annual Review of Materials Science, 28: 153–184

    Article  CAS  Google Scholar 

  67. Qin D., Y. Xia, J. A. Rogers, R. J. Jackman, X. M. Zhao, and G. M. Whitesides, (1998), “Microfabrication, Microstructures and Microsystems,” Topics in Current Chemistry, 194(5369): 1–20

    Article  CAS  Google Scholar 

  68. Whitesides G. M., J. P. Mathias, and C. T. Seto, (1991), “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures,” Science, 254: 1312–1319

    Article  CAS  Google Scholar 

  69. Feynman R., (1992), “There’s plenty of room at the bottom,” reprinted in J. Microelectromechanical Systems, 1(1): 60–66

    Article  Google Scholar 

  70. Fan L. S., Y. C. Tai, and R. S. Muller, (1998), “IC-processed Electrostatic Micromotors,” Tech. digest, IEEE International Electron Device Meeting (IEDM’88), San Francisco, CA, 666–669, Dec. 11–14, 1988

    Google Scholar 

  71. Tai Y. C. and R. S. Muller, (1989), “IC-processed electrostatic synchronous micromotors,” Sensors and Actuators, 20: 49–55

    Article  Google Scholar 

  72. Nathanson H. C. and J. Guldberg, (1975), “Topologically structured thin films in semiconductor devices operation,” Physics of Thin Films, Vol. 8, New York, Academic Press

    Google Scholar 

  73. Bryzek J., K. Petersen, J. Mallon, L. Christel, and F. Pourahmadi, (1990), “Silicon sensors and microstructures,” NovaSensor

    Google Scholar 

  74. Howe R. T. and R. S. Muller, (1984), “Resonant polysilicon microbridge with integrated NMOS detection circuitry,” Extended Abstract, Vol. 84-2, ECS Meeting, New Orleans, LA, 892–893

    Google Scholar 

  75. Milunovich S. and J. Roy, (2001), “The Next Smaller Thing—an introduction to nanotechnology,” Technical Report, Merril Lynch, Sept. 4, 2001

    Google Scholar 

  76. [76] MEMS Industry Group, (2001), “MEMS Industry Group Annual Report 2001,” MEMS Industry Group, Pittsburg, PA, 2001

    Google Scholar 

  77. Ho C. M. and Y. C. Tai, (1998), “Micro Electro Mechanical systems (MEMS) and Fluid Flows,” Annual Review of Fluid Mechanics, 30: 579–612

    Article  Google Scholar 

  78. Muller R., R. Howe, S. Senturia, R. Smith, and R. White, “Microsensors” (1991), IEEE Press, New York

    Google Scholar 

  79. Ljubisa Ristic, (1994), “Sensor Technology and Devices,” Artech House, Inc., Boston

    Google Scholar 

  80. Sze S. M., (1994), “Semiconductor Sensors,’ John Wiley & Sons, Inc., New York

    Google Scholar 

  81. Madou M., (1997), “Fundamentals of Microfabrication,” CRC Press, New York

    Google Scholar 

  82. Kovacs G., (1998), “Micromachined Transducers Source Book,” McGraw Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tai, YC. (2012). Introduction to MEMS. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_6

Download citation

Publish with us

Policies and ethics