Skip to main content

Material Issues for Microsystems

  • Chapter
Book cover Microsystems and Nanotechnology
  • 3975 Accesses

Abstract

For manufacturing a stable, reliable and durable microsystem, the designers must have the correct mechanical properties of materials which are used to prepare structural components before designing the Microsystems. It is well known that the mechanical properties of materials are not only depending on the materials composition, but also on its microstructure, manufacturing processes, and micro components size. Because the material’s properties that could be found in handbook are for bulk materials which are prepared by standard producing processes (for example: rolling, forging). But the micro components in Microsystems are manufactured by the way quite different from the macro components with bulk materials (for example: CVD, Sputtering, Etching). Therefore, the microsystem designer can not use the materials properties listed in handbook to design micro components.

Due to above reasons, there is a serious challenge of materials issue to MEMS designer. It is hardly to make sure that what correct materials properties should he picked up. To find the data from handbook is incorrect, but he could not also find the suitable data from literatures based on the dimensions and preparation processes of micro component he designed. In such case, the designer should measure the materials properties for important microparts by himself before designing MEMS system.

Hereby, before the material’s properties which are usually selected in Microsystems are introduced, this chapter will briefly descript the failure analysis of micro parts and the measuring methods of material’s mechanical properties from the micro components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muhistein C. L., E. A. Stach, and R. O. Ritchie, (2002), Mechanism of fatigue in micro-scale films of polycrystalline silicon for microelectromechanical systems, Applied Phys. Lett., 80(9): 1532–1534

    Article  Google Scholar 

  2. Khoo H. S., K. K. Liu, and F. G. Tseng, (2003), Mechanical strength and interfacial failure analysis of cantilevered SU-8 microposts, J. of Micromech. Microeng., 13: 822–831

    Article  Google Scholar 

  3. Greek. S. and S. Johansson, (1997), Tensile testing of thin film microstructure, Proc. SPIE, 3224: 344–351

    Article  Google Scholar 

  4. Sharpe W. N., B. Jr. Yuan, and A. Edwarde, (1997), new technique for measuring the mechanical properties of thin film, J. of Microelectromechanical System, 6(3): 193–199

    Article  Google Scholar 

  5. Li X. P., G. F. Ding, T. Ando, M. Shilkida, and K. Sato, (2007), Micromechanical characterization of electroplated permalloy films for MEMS, Microsystem Technology, 14: 131–134

    Article  CAS  Google Scholar 

  6. Peterson K. E., and C. R. Guarnieri, (1979), Young’s modulus measurements of thin films using micromechanics, J. of Appl. Phys., 50(11): 6761–6766

    Article  Google Scholar 

  7. Li X. X. et al., (2003), Ultrathin single crystalline silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus, Appl. Phys. Letters, 83(15): 3081–3083

    Article  CAS  Google Scholar 

  8. Xiang Y., X. Chen, and J. J. Vlassak, (2002), The mechanical properties of electroplated Cu thin films measured by means of the Bulge test technique, Mat. Res. Symp. Proc. 695: L4.9.1–L4.9.5

    Article  Google Scholar 

  9. Schneider D., J. Maibach, and E. Obermeier, (1995), New analytical solution for the load-deflection of square membranes, J. of Microelectromechanical Systems, 4(4): 238–241

    Article  Google Scholar 

  10. Vlassak J. J., and W. D. Nix, (1992), New bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin film, J. of Materials Research, 7(12): 3242–3249

    Article  CAS  Google Scholar 

  11. Allen M. G., and S. D. Senturia, (1987), Microfabricated structures for the measurement of adhesion and mechanical properties of polymer films, Proceedings of the ACS, 1987, Denver, CO, USA

    Google Scholar 

  12. Tabata O. et al., (1989), Mechanical property measurements of thin films using loaddeflection of composite rectangular membranes, Sensors and Actuators 20(1–2): 135–141

    Google Scholar 

  13. Ziebart V. at al., (1998), Mechanical properties of thin film from the load deflection of long clamed plates, J. of Microelectromechanical systems, 7(3): 320–328

    Article  CAS  Google Scholar 

  14. Gad-el-Hak M., 2002 MEMS Handbook

    Google Scholar 

  15. He. J. H., Ph.D. Thesis, 2004, Cambridge University

    Google Scholar 

  16. Oliver W. C. and G. M. Pharr, (1992), Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Materials Research, 7(6): 1564–1580

    Article  CAS  Google Scholar 

  17. Senturia S. D., (2001), Microsystem Design, Kluwer Academic Publishers

    Google Scholar 

  18. Wilson C. J., A. Ormeggi, and M. Narbutovskih, (1996), Fracture testing of silicon microcantilever beams, J. of Appl. Phys., 75(5): 2386–2393

    Article  Google Scholar 

  19. Wilson C. J., P. A. Beck, (1996), Fracture testing of bulk silicon microcantilever beams subjected to a sideload. J. of Microelectromechanical Systems, 3(5): 142–150

    Article  Google Scholar 

  20. Weihs T. P., et al., (1988), Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin film, J. of Materials Research, 3(5): 931–942

    Article  Google Scholar 

  21. Nilsson S. G., E. L. Sarwe, and L. Montelius, (2003), Fabrication and mechanical characterization of ultrashort nanocantilevers, Appl. Phys. Letters, 83(5): 990–992

    Article  CAS  Google Scholar 

  22. Denhoff M. W., (2003), A measurement of Young’s modulus and residual stress in MEMS bridge using a surface profiler, J. of Micromechanics and Microengineering, 5: 686–692

    Article  Google Scholar 

  23. Zhang T.-Y. et al., (2000), Microbridge testing of silicon nitride thin films deposited on silicon wafers, Acta Materialia, 48(11): 2843–2857

    Article  CAS  Google Scholar 

  24. Jones P. F., G. C. Johnson, and R. T. Howe, (1996), Micromechanical structures for fracture testing of brittle thin films, Proc. MEMS DSC-Volume 59, Atlanta, GA, November, 325–330

    Google Scholar 

  25. Sundararajan S., Ph.D. thesis, 2001, Ohio State University

    Google Scholar 

  26. Muhlstein C. L., S. B. Brown, and R. O. Ritchie, (a) High cycle fatigue and durability of polycrystalline silicon films in ambient air, Sensors and Actuators A, 2001, 94: 177–188 (b) A reactive-layer mechanism for the delayed failure of micro-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading, Acta Materialia, 50, 2002, 3579-3595

    Article  CAS  Google Scholar 

  27. Petersen K. E., (1982), Silicon as a mechanical material, Proc. of the IEEE, 70(5): 420–457

    Article  CAS  Google Scholar 

  28. Jadaan O. M., et al., (2002), Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials, J. of Materials Science, 38(20): 4087–4113

    Article  Google Scholar 

  29. Brantley W. A., (1993), Calculated elastic constants for stress problems associated with semiconductor devices, J. of Appl. Physc., 44(1): 534–535

    Article  Google Scholar 

  30. Greenwood J. C., (1998), Silicon in mechanical sensors, J. of Physics E: Scientific Instruments, 21(12): 1114–1128

    Article  Google Scholar 

  31. Sato K., et al., (1998), Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip, Sensors and Actuators, 70(1–2): 148–152

    CAS  Google Scholar 

  32. Schweitz J. A., and F. Ericson, (1994), Evaluation of mechanical materials properties by means of surface micromachined structures, Sensors and Actuators, A: Physical, 74(1–3): 126–133

    Google Scholar 

  33. Yi T., et al., (2000), Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength, Sensors and Actuators A, Physical, 83(1): 172–178

    CAS  Google Scholar 

  34. Chasiotis I. and W. Knauss, (1998), Mechanical properties of thin polysilicon films by means of probe microscopy, Proc. of SPIE, 3512: 66–75

    Article  CAS  Google Scholar 

  35. Tsuchiya T., O. Tabato, et al., (1998), Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin film, J. of Micromechanical Syst., 7: 106–113

    Article  CAS  Google Scholar 

  36. Sharpe W., S. Brown, at el., (1998), Round-robin tests for modulus and strength of polysilicon, Proc. Microelectromechanical Structure for Materials Research, 1998(518), Materials Research Society Spring Meeting, San Francisco, CA, 4: 57–65

    Google Scholar 

  37. Madou M. J., (1997), Fundamentals of Microfabrication, 2: 53–87

    Google Scholar 

  38. Levy R. A., et al., (1996), Low pressure chemical vapor deposition of silicon nitride using the environmentally friendly tris(dimethylamino)silane pressure, J. of Materials Research, 11(6): 1483–1488

    Article  CAS  Google Scholar 

  39. Bromley E. I., et al., (1983), Technology for the determination of stress in thin films, Proc. of the Int. Symp. on Electron, on and Photon Beams, 1(4): 1364–1366

    CAS  Google Scholar 

  40. Drummond C. J., and T. J. Senden, (1995), Characterization of the mechanical properties of thin film cantilever with the atomic force microscope, Materials Science Forum, 189–190: 107–114

    Article  Google Scholar 

  41. Bhushan B., and B. K. Gupta, (1991), Handbook of tribology, Materials coatings and surface treatments, Reprint edition, 1991, Krieger, Malabar FL

    Google Scholar 

  42. Ericson F., et al., (1998), Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques, Materials Science and Engineering, A, 105–106: 131–141

    Google Scholar 

  43. Tai Y. C., Parylene MEMS: Material technologies and applications, Proc. of the 20tth Sensor Symposium on Sensors, Micromachines, and Applied Systems, 2003, July 23–24, Tokyo, Japan, 1–8

    Google Scholar 

  44. Harder T. H., et al., (2002), Residual stress in thin film parylene, Proceedings, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, USA, 2002, 435–438

    Google Scholar 

  45. Shih J., et al., (2003), Surface micromachined and integrated capacitive sensors for microfluidic applications, Technical Digest, The 12th International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers’ 03), Boston, USA, 2003, 388–391

    Google Scholar 

  46. [46] Meng E., et al., (2003), A parylene MEMS flow sensing array, Technical Digest, The 12th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’ 03), Boston, USA, 2003, 686–689

    Google Scholar 

  47. Wang X. Q., et al., (1999), A parylene micro check valve, Proceedings, IEEE 12th International Micro Electro Mechanical Systems Conference (MEMS’ 99), Orlando, Florida, Jan. 1999, 177–182

    Google Scholar 

  48. Xie J., et al., (2003), Integrated surface micromachined mass flow controller, Proceedings, The Sixteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’ 03), Kyoto, Japan, Jan. 2003, 20–23

    Google Scholar 

  49. Yao T. J., et al., (2002), Dielectric charging effects on parylene electrostatic actuators, Proceedings, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’ 02), Las Vegas, USA., 2002, 614–617

    Google Scholar 

  50. Bhushan B., (2003), Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, J. of Vac. Sci. Technol., 21(6): 2262–2295

    Article  CAS  Google Scholar 

  51. Liu H., and B. Bhushan, (2002), Investigation of nanotribological properties of selfassembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy, 91: 185–202

    Article  CAS  Google Scholar 

  52. Delamarche E., at al., (1994), Thermal stability of self-assembled monolayers, Langmuirr, 10: 4103–4108

    Article  CAS  Google Scholar 

  53. Srinivasan U., et al., (1998), Alkyltrichlorosilane-based self-assembled monolayer film for stiction reduction in silicon micromachines, J. Microelectromechanical Systems, 7(2): 252–260

    Article  CAS  Google Scholar 

  54. Ahmed S. I., et al., (1999), Microtribological properties of self-assembled monolayers, www.iavf.de/pdf/deutsch, 1999, 1–8

    Google Scholar 

  55. Bhushan B., (1999), Chemical, mechanical, and tribological characterization of ultra-thin and hard amorphous carbon coating as thin as 3.5 nm: Recent developments, Diamond and Related Materials, 8: 1985–2015

    Article  CAS  Google Scholar 

  56. Mayer T. M., et al., (2003), Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices, Applied Phys. Letters, 82(17): 2883–2885

    Article  CAS  Google Scholar 

  57. Aimi M. F., et al., (2004), High-aspect-ratio bulk micromachining of titanium, Nature Materials, 3: 103–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, B. (2012). Material Issues for Microsystems. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_3

Download citation

Publish with us

Policies and ethics