Skip to main content

Biochip

  • Chapter

Abstract

In this chapter, both microarray biochip and microfluidic biochip have been introduced. The background, fabrication technology, and detection technology of the microarray chips and microfluidic chips are presented. This chapter emphasizes microfluidic biochips (including sample pretreatment chips, polymerase chain reaction (PCR) chip, capillary electrophoresis (CE) chips, chromatography chips, hybridization chips, immunoassay chips, micro total analytical system) and their technologies. Many different approaches or methods are discussed here, including their advantages and disadvantages. Some of the microfluidic biochips, such as crossflow filtration chip for blood cells separation, porous silicon chip for DNA purification, chamber stationary PCR chip, glass/PDMS/glass sandwich CE chip, and so on, are designed and fabricated in the State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manz A., N. Graber, H. M. Widmer, (1990), Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuat. B, 1(1–6): 244–248

    Article  CAS  Google Scholar 

  2. El-Ali J., P. K. Sorger, K. F. Jensen, (2006), Cells on chips. Nature, 442(27): 403–411

    Article  CAS  Google Scholar 

  3. Kononen J., L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml, S. Leighton, J. Torhorst, M. J. Mihatsch, G. Sauter, O. P. Kallioniemi, (1998), Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med., 4(7): 844–847

    Article  CAS  Google Scholar 

  4. Fodor S. P., J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, D. Solas, (1991), Light-directed, spatially addressable parallel chemical synthesis. Science, 251: 767–773

    Article  CAS  Google Scholar 

  5. Pease A. C., D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, S. P. Fodor, (1994), Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA, 91: 5022–5026

    Article  CAS  Google Scholar 

  6. Hughes T. R., M. Mao, A. R. Jones, J. Burchard, M. J. Marton, K. W. Shannon, S. M. Lefkowitz, M. Ziman, J. M. Schelter, M. R. Meyer, S. Kobayashi, C. Davis, H. Dai, Y. D. He, S. B. Stephaniants, G. Cavet, W. L. Walker, A. West, E. Coffey, D. D. Shoemaker, R. Stoughton, A. P. Blanchard, S. H. Friend, P. S. Linsley, (2001), Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol., 19: 342–347

    Article  CAS  Google Scholar 

  7. Roda A., M. Guardigli, C. Russo, P. Pasini, M. Baraldini, (2000), Protein microdeposition using a conventional ink-jet printer. BioTechniques, 28(3): 492–496

    CAS  Google Scholar 

  8. Guschin D., G. Yershov, A. Zaslavsky, A. Gemmell, V. Shick, D. Proudnikov, P. Arenkov, A. Mirzabekov, (1997), Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem., 250: 203–211

    Article  CAS  Google Scholar 

  9. Büssow K., D. Cahill, W. Nietfeld, D. Bancroft, E. Scherzinger, H. Lehrach, G. Walter, (1998), A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucl. Acids Res., 26(21): 5007–5008

    Article  Google Scholar 

  10. Zhu H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, M. Snyder, (2001), Global analysis of protein activities using proteome chips. Science, 293: 2101–2105

    Article  CAS  Google Scholar 

  11. Mooney J. F., A. J. Hunt, J. R. McIntosh, C. A. Liberko, D. M. Walba, C. T. Rogers, (1996), Patterning of functional antibodies and other proteins by photolithography of silane monolayers. PNAS, 93: 12287–12291

    Article  CAS  Google Scholar 

  12. FitzGerald S. P., J. V. Lamont, R. I. McConnell, E. O. Benchikh, (2005), Development of a high-throughput automated analyzer using biochip array technology. Clin. Chem., 51(7): 1165–1176

    Article  CAS  Google Scholar 

  13. Frisbie C. D., (1994), Functional group imaging by chemical force microscopy. Science 265: 2071–2074

    Article  CAS  Google Scholar 

  14. Markey F., (1999), What is SPR anyway? Bio Journal, 1: 14–17

    Google Scholar 

  15. Merchant M., S. R. Weinberger, (2000), Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis, 21(6): 1164–1177

    Article  CAS  Google Scholar 

  16. Sinclair B., (1999), MALDI-TOF goes mainstream: laser desorption mass spectrometers for multisample analysis. The Scientist, 13(12): 18

    Google Scholar 

  17. Sethu P., A. Sin, M. Toner, (2006), Microfluidic diffusive filter for apheresis (leukapheresis) Lab Chip, 6: 83–89

    Article  CAS  Google Scholar 

  18. Metz S., C. Trautmann, A. Bertsch, Ph. Renaud, (2004), Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology. J. Micromech. Microeng., 14: 324–331

    Article  CAS  Google Scholar 

  19. Wilding P., L.J. Kricka, J. Cheng, G. Hvichia, M. A. Shoffner, P. Fortina, (1998), Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem., 257: 95–100

    Article  CAS  Google Scholar 

  20. He B., L. Tan, F. Regnier, (1999), Microfabricated filters for microfluidic analytical systems. Anal. Chem, 71: 1464–1468

    Article  CAS  Google Scholar 

  21. Chen X, D. F. Cui, C. C. Liu, H. Li, (2008), Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuat. B, 130: 216–221

    Article  CAS  Google Scholar 

  22. Huang Y., S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, (2002), Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem., 74: 3362–3371

    Article  CAS  Google Scholar 

  23. Hu X.Y., P. H. Bessette, J. R. Qian, C. D. Meinhart, P. S. Daugherty, H. T. Soh, (2005), Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl Acad. Sci. USA, 102: 15757–15761

    Article  CAS  Google Scholar 

  24. Fu A. Y., H. P. Chou, C. Spence, F. H. Arnold, S. R. Quake, (2002), An Integrated microfabricated cell sorter. Anal. Chem., 74: 2451–2457

    Article  CAS  Google Scholar 

  25. Wang M. M., E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, W. F. Butler, (2005), Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnol., 23: 83–87

    Article  CAS  Google Scholar 

  26. Townsend R. J., M. Hill, N. R. Harris, N. M. White, (2004), Modelling of particle paths passing through an ultrasonic standing wave. Ultrasonics, 42: 319–324

    Article  CAS  Google Scholar 

  27. Coakley W. T., J. J. Hawkes, M. A. Sobanski, C. M. Cousins, J. Spengler, (2000), Analytical scale ultrasonic standing wave manipulation of cells and microparticles. Ultrasonics, 38: 638–641

    Article  CAS  Google Scholar 

  28. Edwards T., B. K. Gale, A. B. Frazier, (2001), Microscale purification systems for biological sample preparation. Biomed. Microdev., 3: 211–218

    Article  CAS  Google Scholar 

  29. Goubault C., J. L. Viovy, J. Bibette, (2003), Capture of rare cells by magnetic filaments. In 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems, 239–242

    Google Scholar 

  30. Carlo D. D., K. H. Jeong, L. P. Lee, (2003), Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip, 3: 287–291

    Article  CAS  Google Scholar 

  31. IchikP T., Y. Sugiyama, S. Kase, Y. Horiike, (2003), Surface micromachined hollow microneedle array integrated on a microfluidic chip. In 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems, 1025–1026

    Google Scholar 

  32. Taylor M. T., P. Belgrader, B. J. Furman, F. Pourahmadi, G. T. A. Kovacs, M. A. Northrup, (2001), Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal. Chem., 73: 492–496

    Article  CAS  Google Scholar 

  33. Gao J., X. F. Yin, Z. L. Fang, (2004), Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip, 4: 47–52

    Article  CAS  Google Scholar 

  34. McClain M. A., C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, J. M. Ramsey, (2003), Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem., 75: 5646–5655

    Article  CAS  Google Scholar 

  35. Lee S. W., Y. C. Tai, (1999), A micro cell lysis device. Sens. Actuat. A, 73: 74–79

    Article  CAS  Google Scholar 

  36. Waters L. C., S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote, J. M. Ramsey, (1998), Microchip device for cell iysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem., 70: 158–162

    Article  CAS  Google Scholar 

  37. He Y., Y. H. Zhang, E. S. Yeung, (2001), Capillary-based fully integrated and automated system for nanoliter polymerase chain reaction analysis directly from cheek cells. J. Chromatogr. A, 924: 271–284

    Article  CAS  Google Scholar 

  38. Chen X, D. F. Cui, C. C. Liu, H. Li, J. Chen, (2007), Continuous flow microfluidic devices for cell separation, cell lysis and DNA purification. Analytica Chimica Acta, 584(2): 237–243

    Article  CAS  Google Scholar 

  39. Oleschuk R. D., L. L. Shultz-Lockyear, Y. Ning, D. Jed Harrison, (2000), Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal. Chem., 72: 585–590

    Article  CAS  Google Scholar 

  40. Andersson H., W. van der Wijngaart, P. Enoksson, G. Stemme, (2000), Micromachined flow-through filter-chamber for chemical reactions on beads. Sens. Actuat. B, 67: 203–208

    Article  CAS  Google Scholar 

  41. Ceriotti L., N. F. de Rooij, E. Verpoorte, (2002), An integrated fritless column for on-chip capillary electrochromatography with conventional stationary phases. Anal. Chem., 74: 639–647

    Article  CAS  Google Scholar 

  42. Tian H., A. F. Hühmer, J. P. Landers, (2000), Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal. Biochem., 283: 175–191

    Article  CAS  Google Scholar 

  43. Wolfe K. A., M. C. Breadmore, J. P. Ferrance, M. E. Power, J. F. Conroy, P. M. Norris, J. P. Landers, (2002), Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis, 23: 727–733

    Article  CAS  Google Scholar 

  44. Cady N. C., S. Stelick, C. A. Batt, (2003), Nucleic acid purification using microfabricated silicon structures. Biosen. Bioelectron., 19: 59–66

    Article  CAS  Google Scholar 

  45. Chen X., D. F. Cui, C. C. Liu, H. Li, (2007), Microfabrication and characterization of porous channels for DNA purification. J. Micromech. Microeng., 17(1): 68–75

    Article  CAS  Google Scholar 

  46. Xu Y. C., B. Vaidya, A. B. Patel, S. M. Ford, R. L. McCarley, S. A. Soper, (2003), Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal. Chem., 75: 2975–2984

    Article  CAS  Google Scholar 

  47. Jiang G. F., D. Jed Harrison, (2000), mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst, 125: 2176–2179

    Article  CAS  Google Scholar 

  48. Reddy V., S. Yang, J. D. Zahn, (2005), Interfacial stabilization of organic-aqueous twophase microflows for a miniaturized DNA extraction module, Organic/aqueous two phase microflow for biological sample preparation. J. Colloid Interface Sci., 286: 158–165

    Article  CAS  Google Scholar 

  49. Kamholz A. E., P. Yager, (2002), Molecular diffusive scaling laws in pressure-driven microfluidic channels: Deviation from one-dimensional Einstein approximations. Sens. Actuat. B, 82: 117–121

    Article  CAS  Google Scholar 

  50. Ismagilov R. F., A. D. Stroock, P. J. A. Kenis, G. M. Whitesides, H. A. Stone, (2000), Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett., 76: 2376–2378

    Article  CAS  Google Scholar 

  51. Liu R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, D. J. Beebe, (2000), Passive mixing in a three-dimensional serpentine microchannel. Microelectromech. Syst., 9(2): 190–197

    Article  Google Scholar 

  52. Strock A., S. K. Dertinger, G. M. Whitesides, A. Ajdari, (2002), Patterning flows using grooved surfaces. Anal. Chem., 74(20): 5306–5312

    Article  CAS  Google Scholar 

  53. Howell P. B., D. R. Jr. Mott, S. Fertig, C. R. Kaplan, J. P. Golden, E. S. Oranb, F. S. Ligler, (2005), A microfluidic mixer with grooves placed on the top and bottom of the channel. Lab Chip, 5: 524–530

    Article  CAS  Google Scholar 

  54. Yaralioglu G. G., I. O. Wygant, T. C. Marentis, B. T. Khuri-Yakub, (2004), Ultrasonic mixing in microfluidic channels using integrated transducers. Anal. Chem., 76: 3694–3698

    Google Scholar 

  55. Glasgow I., N. Aubry, (2003), Enhancement of microfluidic mixing using time pulsing. Lab Chip, 3(2): 114–120

    Article  CAS  Google Scholar 

  56. Lu L. H., K. S. Ryu, C. Liu, (2002), A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst. 11: 462–469

    Article  CAS  Google Scholar 

  57. Northrup M. A., M. T. Ching, R. M. White, R. T. Watson, (1993), DNA amplification with a microfabricated reaction chamber. In Proceedings of IEEE International Conference on Solid-State Sensor and Actuators. 924–926

    Google Scholar 

  58. Zhao Z., Z. Cui, D. F. Cui, S. H. Xia, (2003), monolithically integrated PCR biochip for DNA amplification. Sens. Actuat. A, 108(1–3): 162–167

    Article  CAS  Google Scholar 

  59. Zhao Y, Q., D. F. Cui, (2006), PCR-Chip integrated with thermoelectric temperature control. Rare Metal Mater. Eng., 35(suppl. 3): 313–314

    CAS  Google Scholar 

  60. Daniel J. H., S. Iqbal, R. B. Millington, (1998), Silicon microchambers for DNA amplification. Sens. Actuat. A, 71: 81–88

    Article  CAS  Google Scholar 

  61. Kopp M. U., A. J. de Mello, A. Manz, (1998), Chemical amplification: Continuous-flow PCR on a chip. Science, 280: 1046–1048

    Article  CAS  Google Scholar 

  62. Liu J., M. Enzelberger, S. Quake, (2002), A nanoliter rotary device for polymerase chain reaction. Electrophoresis, 23:1531–1536

    Article  CAS  Google Scholar 

  63. Taylor T. B., E. S. Winn-Deen, E. Picozza, T. M. Woudenberg, M. Albin, (1997), Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucl. Acids Res. 25: 3164–3168

    Article  CAS  Google Scholar 

  64. Belgrader P., S. Young, B. Yuan, M. Primeau, L. A. Christel, F. Pourahmadi, M. A. Northrup, (2001), A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem., 73: 286–289

    Article  CAS  Google Scholar 

  65. Waters L. C., S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote, J. M. Ramsey, (1998), Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem., 70: 158–162

    Article  CAS  Google Scholar 

  66. Manz A., D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, H. M. Widmer, (1992), Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J. Chromatogr., 593: 253–258

    Article  CAS  Google Scholar 

  67. McDonald J. C., M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, G. M. Whitesides, (2002), Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem., 74: 1537–1545

    Article  CAS  Google Scholar 

  68. Henry A. C., T. J. Tutt, M. Galloway, Y.Y. Davidson, C. S. McWhorter, S. A. Soper, R. L. McCarley, (2000), Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal. Chem., 72: 5331–5337

    Article  CAS  Google Scholar 

  69. Liu Y., D. Ganser, A. Schneider, R. Liu, P. Grodzinski, N. Kroutchinina, (2001), Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem., 73: 4196–4201

    Article  CAS  Google Scholar 

  70. Liu C. C., D. F. Cui, H. Y. Cai, X. Chen, Z. X. Geng, (2006), An rigid Poly(dimethyl siloxane) sandwich electrophoresis microchip based on thin-casting method. Electrophoresis, 27(14): 2917–2923

    Article  CAS  Google Scholar 

  71. Shi Y., P. C. Simpson, J. R. Scherer, D. Wexler, C. Skibola, M. T. Smith, R. A. Mathies, (1999), Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid. Anal. Chem., 71:5354–5361

    Article  CAS  Google Scholar 

  72. Paegel B. M., S. H. I. Yeung, R. A. Mathies, (2002), Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Anal. Chem, 74: 5092

    Article  CAS  Google Scholar 

  73. Emrich C. A., H. J. Tian, I. L. Medintz, R. A. Mathies, (2002), Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal. Chem., 74: 5076

    Article  CAS  Google Scholar 

  74. Rocklin R. D., R. S. Ramsey, J. M. Ramsey, (2000), A microfabricated fluidic device for performing two-dimensional liquid-phase separations. Anal. Chem., 72(21): 5244–5249

    Article  CAS  Google Scholar 

  75. Sanders J. C., M. C. Breadmore, P. S. Mitchell, J. P. Landers, (2002), A simple PDMSbased electro-fluidic interface for microchip electrophoretic separations. Analyst, 127(12): 1558–1563

    Article  CAS  Google Scholar 

  76. Liu C. C., D. F. Cui, (2005), Design and fabrication of PDMS electrophoresis microchip with integrated electrodes. Microsyst. Technol., 11(12): 1262–1266

    Article  CAS  Google Scholar 

  77. Chabinyc M. L., D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, G. M. Whitesides, (2001), An integrated fluorescence detection system in Poly(dimethylsiloxane) for microfluidic applications. Anal. Chem., 73(18): 4491–4498

    Article  CAS  Google Scholar 

  78. Liu C. C., D. F. Cui, H. Y. Cai, B. Su, X. Chen, H. N. Wang, Z. X. Geng, (2006), An integrated PDMS electrophoresis microchip with LED induced fluorescence detection. Rare Metal Mater. Eng., 35(12): 315–318

    Google Scholar 

  79. Liu C. C., D. F. Cui, X. Chen, (2007), Development of an integrated direct-contacting optical-fiber microchip with LED-induced fluorescence detection. J. Chromatogr. A, 1170: 101–106

    Article  CAS  Google Scholar 

  80. Su B., D. F. Cui, C. C. Liu, X. Chen, (2006), Fabrication of microfluidic fiber chip detection system. Rare Metal Mater. Eng., 35(12): 325–326

    Google Scholar 

  81. Jackson D. J., J. F. Naber, T. J. Roussel, M. M. Crain, K. M. Walsh, R. S. Keynton, R. P. Baldwin, (2003), Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Anal. Chem., 75(14): 3311–3317

    Article  CAS  Google Scholar 

  82. Lee G. B., S. H. Chen, G. R. Huang, W. C. Sung, Y. H. Lin, (2001), Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuat. B, 75(1–2): 142–148

    Article  CAS  Google Scholar 

  83. Emrich C. A., H. Tian, I. L. Medintz, R. A. Mathies, (2002), Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal. Chem., 74(19): 5076–5083

    Article  CAS  Google Scholar 

  84. Medintz I. L., B. M. Paegel, R. A. Mathies, (2001), Microfabricated capillary array electrophoresis DNA analysis systems. J. Chromatogr. A, 924(1–2): 265–270

    CAS  Google Scholar 

  85. Wallenborg S. R., G. B. Christopher, (2000), Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence. Anal. Chem., 72(8): 1872–1878

    Article  CAS  Google Scholar 

  86. Renzi R. F., J. Stamps, B. A. Horn, S. Ferko, V. A. Vander Noot, J. A. A. West, R. Crocker, B. Wiedenman, D. Yee, J. A. Fruetel, (2005), Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal. Chem., 77(2): 435–441

    Article  CAS  Google Scholar 

  87. Lehmann U., O. Krusemark, J. Müller, A. Vogel, D. Binz, P. Krippner, C. J. Schmidt, (2001), Micro machined analytical gas chromatograph with a plasma polymerised stationary phase. Proc. Sens., 2: 487–492

    Google Scholar 

  88. Frye-Mason G., R. Kottenstette, P. Lewis, E. Heller, R. Manginell, D. Adkings, G. Dulleck, D. Martinez, D. Sasaki, C. Mowry, C. Matzke, L. Anderson, (2000), Hand-held miniature chemical analysis system (μchemlab) for detection of trace concentrations of gas phase analytes. Van denBerg A, et al. (eds). Micro Total Anal. Sys: 229–232

    Google Scholar 

  89. van Deemter J. J., F. J. Zuiderweg, A. Klinkenberg, (1956), Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci., 5: 271–289

    Article  Google Scholar 

  90. He Q., C. Pang, Y. C. Tai, T. Lee, (2005), An integrated ion liquid chromatography chip with conventionally-packed separation column. Center for Embedded Network Sensing. Jan. 1 Paper 466

    Google Scholar 

  91. Wang Y., B. Vaidya, H. D. Farquar, W. Stryjewski, R. P. Hammer, R. L. McCarley, S. A. Soper, Y. W. Cheng, F. Barany, (2003), Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations. Anal. Chem., 75:1130–1140

    Article  CAS  Google Scholar 

  92. Fan Z. H., S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, R. Kumar, (1999), Dynamic DNA hybridization on a chip using paramagnetic beads. Anal. Chem., 71: 4851–4859

    Article  CAS  Google Scholar 

  93. Anderson R. C., X. Su, G. J. Bogdan, J. Fenton, (2000), A miniature integrated device for automated multistep genetic assays. Nucl. Acids Res., 28(12): e60

    Article  CAS  Google Scholar 

  94. Liu R. H., J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, (2004), Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem., 76: 1824–1831

    Article  CAS  Google Scholar 

  95. Cheng S. B., C. D. Skinner, J. Taylor, S. Attiya, W. E. Lee, G. Picelli, D. J. Harrison, (2001), Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem., 73(7): 1472–1479

    Article  CAS  Google Scholar 

  96. Wang J., A. Ibanez, M. P. Chatrathi, A. Escarpa, (2001), Electrochemical enzyme immunoassay on microchip platforms Anal. Chem., 73: 5323–5327

    Article  CAS  Google Scholar 

  97. Ko J. S., H. C. Yoon, H. Yang, H. B. Pyo, K. H. Chung, S. J. Kim, Y. I. Kim, (2003), A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3: 106–113

    Article  CAS  Google Scholar 

  98. Lai S., S. Wang, J. Luo, L. J. Lee, S. T. Yang, M. J. Madou, (2004), Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem., 76: 1832–1837

    Article  CAS  Google Scholar 

  99. Linder V., E. Verpoorte, W. Thormann, N. F. de Rooij, H. Sigrist, (2001), Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal. Chem., 73: 4181–4189

    Article  CAS  Google Scholar 

  100. Woolley A. T., D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, M. A. Northrup, (1996), Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem., 68(23): 4081–4086

    Article  CAS  Google Scholar 

  101. Cheng J., E. L. Sheldon, L. Wu, A. Uribe, L. O. Gerrue, J. Carrino, M. J. Heller, J. P. O’Connell, (1998), Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nature Biotechnol., 16(6): 541–546

    Article  CAS  Google Scholar 

  102. Burns M. A., B. N. Johnson, A. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, D. T. Burke, (1998), An integrated nanoliter dna analysis device. Science, 282: 484–487

    Article  CAS  Google Scholar 

  103. Pal R., (2005), An integrated microfluidic device for influenza and other genetic analyses. Lab Chip, 5: 1024–1032

    Article  CAS  Google Scholar 

  104. Blazej R. G., P. Kumaresan, R. A. Mathies, (2006), Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc. Natl. Acad. Sci. USA, 103: 7240–7245

    Article  CAS  Google Scholar 

  105. Jacobson S. C., L. B. Koutny, R. Hergenröder, A. W. Moore, J. M. Ramsey, (1994), Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem., 66: 3472–3476

    Article  CAS  Google Scholar 

  106. Hofmann O., D. Che, K. A. Cruickshank, U. R. Mueller, (1999), Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal. Chem., 71(3): 678–686

    Article  CAS  Google Scholar 

  107. L’Hostis E., P. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooij, M. Koudelka-Hep, (2000), Microreactor and electrochemical detectors fabricated using Si and EPON SU-8. Sens. Actuat. B, 64: 156–162

    Article  Google Scholar 

  108. Cheek B. J., A. B. Steel, M. P. Torres, Y. Y. Yu, H. Yang, (2001), Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem., 73: 5777–5783

    Article  CAS  Google Scholar 

  109. Woolley A. T., K. Q. Lao, A. N. Glazer, R. A. Mathies, (1998), Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem., 70: 684–688

    Article  CAS  Google Scholar 

  110. Wang J., B. Tian, E. Sahlin, (1999), Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal. Chem., 71: 5436–5440

    Article  CAS  Google Scholar 

  111. Gawron A. J., R. S. Martin, S. M. Lunte, (2001), Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis, 22: 242–248

    Article  CAS  Google Scholar 

  112. Weber G., M. Johnck, D. Siepe, A. Neyer, R. Hergenroder, (2000), In Proceedings of micro total analysis systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 383–386

    Google Scholar 

  113. Ontko A. C., P. M. Armistead, S. R. Kircus, H. H. Thorp, (1999), Electrochemical detection of single stranded DNA using polymer modified electrodes. Inorg. Chem., 38:1842–1846

    Article  CAS  Google Scholar 

  114. Martin R. S., A. J. Gawron, S. M. Lunte, C. S. Henry, (2000), Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal. Chem., 72: 3196–3202

    Article  CAS  Google Scholar 

  115. Li J., P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. L. Colyer, D. J. Harrison, (1999), Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests Anal. Chem., 71: 3036–3045

    Article  CAS  Google Scholar 

  116. Zhang B., H. Liu, B. L. Karger, F. Foret, (1999), Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry Anal. Chem., 71: 3258–3264

    Article  CAS  Google Scholar 

  117. Deng Y. Z., J. Henion, J. J. Li, P. Thibault, C. Wang, D. J. Harrison, (2001), Determination of Carnitines in Human Urine Anal. Chem., 73: 639–646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, D. (2012). Biochip. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_20

Download citation

Publish with us

Policies and ethics