Skip to main content

Micro/Nano Fluidics Mechanics and Transducers

  • Chapter
Microsystems and Nanotechnology
  • 4019 Accesses

Abstract

In biochemical analyses, sample fluid volume in the nano or pico liter range is commonly encountered in various processes. For example, the preparation, mixing, separation, and concentration of cells and biomolecules in such small amount of fluids are very often needed in most analyses. From the science and technology point of view, efficient momentum and energy transfers of the desired fluid and particle motions in such small scales need sufficient comprehension of mechanics and MEMS (micro-electro-mechanical systems) transducers of similar length scales. Interestingly, MEMS/NEMS technologies do enable us to match the device and the fluid length scale for handling fluids in extremely small volume. This opens up a tremendous opportunity for research and development. In traditional fluid dynamics, the flow length scale is much larger than the molecular length scale. Continuum mechanics is the most common hypothesis used for flow research. In the case of micro/nano engineering systems, however, one may encounter regimes from continuum all the way down to molecule-dominated conditions. Therefore, in micro/nano fluidics, there are many new challenges that are very different from those in traditional fluidic systems. In this chapter, we discuss these special issues related to micro/nano fluidics and MEMS transducers in handling extremely small amount of fluids, including embedded particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim C. J., A. P. Pisano, and R. S. Muller, (1992), J. Microelectromechanical Systems, 1: 31

    Article  CAS  Google Scholar 

  2. Lu Y., C. J. %Kim, (2003), “Micro-finger articulation by Pneumatic Parylene Balloons”, in IEEE Transducer’ 03, Boston, 276–279

    Google Scholar 

  3. Tien C. L., A. Majumdar, and F. M. Gerner, (1998), “Microscale Energy Transport”, Taylor & Francis Pub

    Google Scholar 

  4. Larson R. G., (1999), “The structure and rheology of Complex Fluids”, Oxford University Press

    Google Scholar 

  5. Israelachvili J. N., (1992), “Intermolecular and Surface Forces”, Academic Press

    Google Scholar 

  6. Gee M. L., et al., (1990), “Liquidlike to Solidlike Transitions of Molecularly Thin Films under Shear”, J. Chem. Phys. 93(3): 1895–1906

    Article  CAS  Google Scholar 

  7. Barnes H. A., (1995), “A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscometers: its Cause, Character, and Cure”, J. non-Newtonian Fluid Mech., 56(3): 221–256

    Article  CAS  Google Scholar 

  8. Grosjean C., and Y. C. Tai, (1999), “A Thermopneumatic Peristaltic Micropump”, 1999 International Conference on Solid-State Sensors and Actuators (Transducers’ 99), Sendai, Japan, June

    Google Scholar 

  9. Xie J., J. Shih, and Y. C. Tai, (2003), “Integrated parylene electrostatic peristaltic pump”, Proceedings, 2003 Micro Total Analysis System (uTAS’ 03), Squaw Valley, California, USA, Oct. 5–9, 865–869

    Google Scholar 

  10. Wong P. K., U. Ulmanella, and C. M. Ho, “Fabrication Process of Microsurgical Tools for Single-Cell Trapping and Intracytoplasmic Injection”, J. Microelectromechanical Systems (in press)

    Google Scholar 

  11. LeDuc P., C. Haber, G. Bao, and D. Wirtz, (1999), “Dynamics of Individual Flexible Polymer in a Shear Flow”, Nature, 399: 564–566

    Article  CAS  Google Scholar 

  12. Smith D. E., H. P. Babcock, and S. Chu, (1999), “Single-polymer dynamics in steady shear flow”, Science, 283: 1724–1727

    Article  CAS  Google Scholar 

  13. Babcock H. P., D. E. Smith, J. S. Hur, E. S. G. Shaqfeh, and S. Chu, (2000), “Relating the microscopic and macroscopic response of a polymeric fluid in a shearing flow”, Physical Review Letters, 85(9): 2018–2021

    Article  CAS  Google Scholar 

  14. Wong P. K., Y. K. Lee, C. M. Ho, (2003), “Deformation of DNA molecules by hydrodynamic focusing”, Journal of Fluid Mechanics, 497: 55–65

    Article  CAS  Google Scholar 

  15. Perkins T. T., S. R. Quake, D. E. Smith, and S. Chu, (1994), “Relaxation of a single DNA molecule observed by optical microscopy”, Science, 264(5160): 822–826

    Article  CAS  Google Scholar 

  16. Wong P. K., T. H. Wang, J. H. Deval, C. M. Ho, “Electrokinetics in Micro Devices for Biotechnology Applications”, IEEE/ASME Transactions on Mechatronics (in press)

    Google Scholar 

  17. Ramos A., H. Morgan, N. G. Green, and A. Castellanos, (1998), “AC electrokinetics: a review of forces in microelectrode structures”, J. Phys D: Appl. Phys., 31: 2338–2353

    Article  CAS  Google Scholar 

  18. Green N. G., and H. Morgan, (1998), “Separation of Submicrometer Particles Using a Combination of Dielectrophoretic and Electrohydrodynamic Forces”, J. Phys. D: Appl. Phys. 3: 1 25–30

    Article  Google Scholar 

  19. Pohl H. A., (1978), “Dielectrophoresis: the Behavior of Neutral Matter in Nonuniform Electric Fields”, Cambridge University Press

    Google Scholar 

  20. Ramos A., H. Morgan, N. G. Green, and A. Castellanos, (1999), “The Role of Electrohydrodynamic Forces in the Dielectrophoretic Manipulation and Separation of Particles”, J. Electrostatics, 47: 71–81

    Article  CAS  Google Scholar 

  21. Schnelle T., T. Müller, G. Gradl, S. G. Shirley, and G. Fuhr, (2000), “Dielectrophoretic Manipulation of Suspended Submicron Particles”, Electrophoresis, 21: 66–73

    Article  CAS  Google Scholar 

  22. Hughes M. P., (2000), “AC Electrokinetics: Applications for Nanotechnology”, Nanotechnology, 11: 124–132

    Article  CAS  Google Scholar 

  23. Green N. G., and H. Morgan, “Dielectrophoretic separation of nano-particles”, J. Phys. D: Appl. Phys. 30: 41–84, (1997) 9(2): 190–197, (2000)

    Article  Google Scholar 

  24. Kittilsland G., G. Steme, and B. Norden, (1990), “A Submicron Particle Filter in Silicon”, Sensors and Actuators A: Physical, 23: 904–907

    Article  Google Scholar 

  25. van Rijn C. J. M., M. van der Wekken, W. Hijdam, and M. C. Elwenpoek, (1997), “Deflection and Maximum Load of Microfiltration Membrane Sieves Made with Silicon Micromachining”, 1997, Journal of Microelectromechanical Systems, 6: 48–54

    Article  Google Scholar 

  26. Yang X., J. M. Yang, Y. C. Tai, and C. M. Ho, (1999), “Micromachined membrane particle filters”, Sensor and Actuators A; Physical, 73: 184–191

    Article  CAS  Google Scholar 

  27. Yang J. M., X. Yang, C. M. Ho, and Y. C. Tai, (1999), “Prediction of the Pressure Drop Through Micromachined Particle Filters”, Technical Proceedings of International Conference on Modeling and Simulation of Microsystems (MSM’ 99), San Juan, Puerto Rico 546–549

    Google Scholar 

  28. Hsiai T. K., J. M. Yang, X. Yang, S. K. Cho, Y. Chen, C. M. Ho, and Y. C. Tai, (2000), “Pressure Drops of Water Flow through Micromachined Particle Filters” submitted to ASME Journal of Fluids Engineering

    Google Scholar 

  29. Lee S. W., J. M. Yang, Y. C. Tai, and C. M. Ho, (1999), “Electrostatically active microfilters for automated airborne particle collection”, International Conference on Solid-State Sensors and Actuators (Transducers’ 99), Sendai, Japan

    Google Scholar 

  30. Desai, S., W. Lee, and Y. C. Tai, (1999), “A MEMS electrostatic particle transportation system”, Sensors and Actuators A; Physical, 73: 37–44

    Article  CAS  Google Scholar 

  31. Lorenz E., (1963), “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20

    Google Scholar 

  32. Ottino J. M., (1989), “The Kinematics of Mixing: Stretching, Chaos, and Transport”, Cambridge University Press, New York

    Google Scholar 

  33. Liu R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, (2000), “Passive Mixing in a Three-dimensional Serpentine Microchannel”, Journal of MEMS, 9(2): 190–197

    Article  Google Scholar 

  34. Volpert M., C. D. Meinhart, I. Mezic, and M. Dahelh, (1999), “An Actively Controlled Micromixer”, Proc. of MEMS, ASME IMECE, Nashville, Tennessee, 483–487

    Google Scholar 

  35. Lee Y. K., P. Tabeling, C. Shi, and C. M. Ho, (2000), “Characterization of a MEMSFabricated Mixing Device”, Proc. of MEMS, ASME IMECE, Orlando, Florida, Nov

    Google Scholar 

  36. Lee Y. K, J. Deval, P. Tabeling. and C. M. Ho, (2001), “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows”, Proceedings of the IEEE 14th Annual Workshop of Micro Electro Mechanical Systems (MEMS’ 01), Interlaken, Switzerland

    Google Scholar 

  37. He Q., C. Pang, Y. C. Tai, and T. Lee, (2004), “Ion liquid chromatography on a chip with bead-packed parylene column”, Proceedings, The Seventeenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’ 04), Maastricht, The Netherlands, Jan. 25–29, 212–215

    Google Scholar 

  38. Weigl B. H., and P. Yager, (1999), “Microfluidic Diffusion-Based Separation and Detection”, Science

    Google Scholar 

  39. Brody J. P., and P. Yager, (1997), “Diffusion-based extraction in a microfabricated device”, Sensors and Actuators, A 58: 13–18

    Article  CAS  Google Scholar 

  40. Tu J. K., T. Huen, R. Szema, and M. Ferrari, (1999), “Filtration of sub-100 nm particles using a bulk-micromachined, direct-bonded silicon filter”, J. Biomedical Microdevices 1(2): 113–119

    Article  CAS  Google Scholar 

  41. van Rijn C., G. Veldhuis, and S. Kuiper, (1998), “Nanosieves with microsystem technology for microfiltration applications”, Nanotechnology 9: 343–345

    Article  Google Scholar 

  42. Effenhauser C. S., A. Manz, and H. M. Widmer, (1993), “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights”, Anal. Chem. 65: 2637–2642

    Article  CAS  Google Scholar 

  43. Woolley A. T., and R. A. Mathies, (1995), “Ultra-high-speed DNA sequencing using capillary electrophoresis chips”, Anal. Chem. 67: 3676–3680

    Article  CAS  Google Scholar 

  44. Deyl Z., I. Miksik, and F. Tagliaro, (1998), “Advances in capillary electrophoresis”, Forensic Science International, 92: 89–124

    Article  CAS  Google Scholar 

  45. Burggraf N., A. Manz, E. Verpoorte, C. S. Effenhauser, H. M. Widmer, N. F. de Rooij, (1994), “A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis (SCCE)”, Sensors and Actuators, B20(2–3): 103–110

    Google Scholar 

  46. Becker H., K. Lowack, and A. Manz, (1998), “Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications”, J. Micromech. Microeng. 8: 24–28

    Article  CAS  Google Scholar 

  47. Simpson P. C., A. T. Woolley, and R. A. Mathies, (1998), “Microfabrication technology for the production of capillary array electrophoresis chips”, J. of Biomedical Microdevices, 1(1): 7–26

    Article  CAS  Google Scholar 

  48. Ivnitski D., I. Abdel-Hamid, P. Atanasov, and E. Wilkins, (1999), “Biosensors for detection of pathogenic bacteria”, Biosensor and Bioelectronics, 14: 599–624

    Article  CAS  Google Scholar 

  49. Ivnitski D., I. Abdel-Hamid, P. Atanasov, E. Wilkins, and S. Stricker, (2000), “Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria”, Electroanalysis, 12(5): 317–325

    Article  CAS  Google Scholar 

  50. Chen Y. F., J. M. Yang, J. J. Gau, C. M. Ho, and Y. C. Tai, (2000), “Microfluidic System for Biological Agent Detection”, Proc. of the 3rd International conference on the interaction of Art and Fluid Mechanics, Zurich, Switzerland

    Google Scholar 

  51. Gau J. J., E. H. Lan, B. Dunn, and C. M. Ho, (2000), “Enzyme-based electrochemical biosensor with DNA array chip”, Proc. of the fourth International Symposium on Micro Total Analysis Systems (μTAS), Enschede, The Netherlands, 5(14–18): 509–511

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, CM., Tai, YC. (2012). Micro/Nano Fluidics Mechanics and Transducers. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_2

Download citation

Publish with us

Policies and ethics