Skip to main content

MEMS in Automobiles

  • Chapter
Microsystems and Nanotechnology

Abstract

This chapter provides an overview of microelectromechanical system (MEMS)-based commercial products. It also discusses the basic MEMS technologies, including IC technology, MEMSCAD (MEMS computer added design), micromachining, materials, and packaging and testing. The emphasis is on the compatibility issues of the various micromachining and packaging technologies with the special requirements of automotive applications. The fabrication, application, and evolution of the silicon membrane-based pressure transducers, silicon-based micro-accelerometers, and solid-state gyroscopes are described. A variety of driver vision assistance devices, the potential high-volume automotive products, are presented. The paper is concluded with a remark on the upcoming systems that are able to make automobile safer, more fuel efficient, and fun to drive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eddy D. S., D. R. Sparks, (1998), Application of MEMS technology in automotive sensors and actuators. Proc. IEEE, 86(8): 1747–1755

    Article  Google Scholar 

  2. Fleming W. J., (2001), Overview of automotive sensors. IEEE Sens. J., 1(4): 296–308

    Article  CAS  Google Scholar 

  3. Monk D.J., (2002), MEMS physical sensors for automotive applications. In Proceedings of the ECS Microfabricated Systems and MEMS VI, Philadelphia, PA, Spring 2002, 43–63

    Google Scholar 

  4. Petersen K. E., (2000), Bring MEMS to market. In Proceedings of Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 60–64

    Google Scholar 

  5. Bryzek J., (2001), Increasing probability of a success for high-tech startup companies. In Proceedings of Transducers’ 01 Eurosensors XV, Munich, Germany, 4A1.01, 1268–1275

    Google Scholar 

  6. Payne R. S., (2001), MEMS commercialization: Slow but steady. In Proceedings of Transducers’ 01 Eurosensors XV, Munich, Germany, 4A1.04

    Google Scholar 

  7. Williams K. R., R. S. Muller, (1996), Etch rates for micromachining processing. J. Microelec-tromechan. Sys., 5(4): 256–269

    Article  CAS  Google Scholar 

  8. Shikida M., K. Sato, K. Tokoro, D. Uchikawa, (2000), Differences in anisotropic etching properties of KOH and TMAH solutions. Sens. Actuat., 80: 179–188

    Article  CAS  Google Scholar 

  9. Kovacs G. T., N. I. Maluf, K. E. Petersen, (1998), Bulk micromachining of Silicon. Proc. IEEE, 86(8): 1536–1551

    Article  CAS  Google Scholar 

  10. de Boer M. J., J. G. E. Gardeniers, h. v. Jansen, E. Smulders, M. J. Gilde, G. Roelofs, J. N. Sasserath, M. Elwenspoek, (2002), Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures. JMEMS, 11(4): 385–401

    Google Scholar 

  11. Ayon A. A., R. A. Braff, C. C. Lin, H. H. Sawin, M. A. Schmidt, (1999), Characterization of a time Multiplexed Inductively Coupled Plasma Etcher. J. ECS., 146(1): 339–349

    CAS  Google Scholar 

  12. Elwenspoek M., H. V. Jansen, (1998), Silicon micromachining. Cambridge Studies in Semi-conductor Physics and Microelectronics Engineering: 7, Cambridge University Press

    Google Scholar 

  13. Bustillo J. M., R. T. Howe, R. S. Muller, (1998), Surface micromachining for microelectromachanical systems. Proc. IEEE, 86(8): 1552–1574

    Article  CAS  Google Scholar 

  14. Nathanson H. C., W. E. Newell, R. A. Wickstrom, J. R. Davis, (1967), The resonant gate transistor. IEEE Trans. Electron Devices, ED-14: 117–133

    Article  CAS  Google Scholar 

  15. Payne R. S., S. Sherman, S. Lewis, R. T. Howe, (1995), Surface micromachining: From vision to reality to vision. In Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, CA 1995, 164–165

    Google Scholar 

  16. Romankiw L. T., (1995), Evolution of the plating through lithographic mask technology. In Proceedings of the fourth International Symposium on Magnetic Materials, Process and Devices (Application to Storage & Microelectromechanical Systems MEMS), Chicago, IL, USA 1995, 253–272

    Google Scholar 

  17. Becker E. W., W. Ehrfeld, P. A. Hagmann, D. Münchmeyer, (1986), Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA). Microelectron. Eng., 4: 34–35

    Article  Google Scholar 

  18. Dukovic J. O., (1994), Current distribution & shape change in electrodeposition of thin films for microelectronic fabrication. In Advances in Electrochemical Science & Engineering. Edited by Gerischer H, Tobias CW, VCH, New York, 117–161

    Google Scholar 

  19. Petersen K. E., (1982), Silicon as a mechanical material. Proc. IEEE, 70(5): 420–457

    Article  CAS  Google Scholar 

  20. Mehregany M., C. A. Zorman, N. Rajan, C. H. Wu, (1998), Silicon carbide MEMS for harsh environments. Proc. IEEE, 86(8): 1594–1610

    Article  CAS  Google Scholar 

  21. Sparks D. R., (1998), Component integration and packaging of automotive microsystems. In Proceedings of Microsystem Symposium, Delft, The Netherlands 1998, 37–45

    Google Scholar 

  22. Ziaie B., N. K. Kocaman, K. Najafi, (1997), A generic micromachined silicon platform for low-power, low-loss miniature transceivers. In Proceedings of Trnasducers’97, Chicago, IL 1997, 257–260

    Google Scholar 

  23. Clark S. A., K. D. Wise, (1979), Pressure sensitivity in anisotropically etched thin diaphragm pressure sensors. IEEE Trans. Electron Devices, ED-26(12): 1887–1896

    Article  Google Scholar 

  24. Fung C. D., W. H. Ko, (1982), Miniature capacitive pressure transducers. Sens. Actuat., 2: 321–326

    Google Scholar 

  25. Baney W, D. Chilcott, X. Huang, S. Long, J. Siekkinen, D. Sparks, S. Staller, (1997), A comparison between micromachined piezoresistive and capacitive pressure sensors. SAE Special Publications, 1311: 61–64

    Google Scholar 

  26. Burgess J., (2003), Tire pressure monitoring: An industry under pressure. Sensors

    Google Scholar 

  27. Monk D. J., D. Mladenovic, M. Skaw, (2003), Accelerometer for automotive applications, sensors applications volume 4. In Sensors for Automotive Applications. Marek J, Trah HP, Suzuki Y, Yokomori I Ed., VCH, Wiley, 296–297

    Google Scholar 

  28. MacDonald G. A., (1990), A review of low cost accelerometers for vehicle dynamics. Sens. Actuat. A, 21(1–3): 303–307

    Article  Google Scholar 

  29. Aikele M., K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, H. Schalk, H. Seidel, (2001), Resonant accelerometer with self-test. Sens. Actuat., A-92: 161–167

    Article  CAS  Google Scholar 

  30. Core T. A., W. K. Tsang, S. J. Sherman, (1993), Fabrication technology for an integrated surface-micromachined sensor. Solid State Technol., 36(10): 39–47

    CAS  Google Scholar 

  31. Krakauer A., (2003), A unique angular-rate-sensing gyro. Sens. Magazine, 20(9): 53–58

    Google Scholar 

  32. Putty M.W., K. Najafi, (1994), A micromachined vibrating gyroscope. In Proceedings of Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 1994, 213–220

    Google Scholar 

  33. Newton G. C., (1963), Theory and practice in vibratory rate gyros. Control Eng., 95–99

    Google Scholar 

  34. McNie ME, Burdess JS, Harris AJ, Young M (1999) High aspect ratio ring gyroscopes fabricated in [100] silicon on insulator (SOI) material. In Technical Digest IEEE International Conference on Solid-State Sensors and Actuators, Sendai, Japan, 1590–1593

    Google Scholar 

  35. Frank R., (2006), Vision sensing enables safer vehicles. Auto Electronics January/Februay: 12–19

    Google Scholar 

  36. Day J. H., (2007), Peripheral vision. Auto Electron. January/February: 10–14

    Google Scholar 

  37. Sun Z, G. Bebis, R. Miller, (2006), On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Machine Intell., 28(5): 694–711

    Article  Google Scholar 

  38. Kallhammer J. E., (2006), Imagine: The road ahead for car night vision. Nature Photonics, May: 12–13

    Google Scholar 

  39. Rogalski A., (2003), Third-generation infrared photon detectors. Optical Eng., 42(12): 3498–3516

    Article  CAS  Google Scholar 

  40. Walther M., R. Schmitz, R. Rehm, S. Kopta, F. Fuchs, W. Fleibner, J. Cabanski, J. Ziegler, (2005), Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors. J Crystal Growth, 278: 156–161

    Article  CAS  Google Scholar 

  41. Bandara S. V., S. D. Gunapala, D. Z. Ting, J. K. Liu, C. J. Hill, J. M. Mumolo, S. Keo, (2007), Monolithically integrated near-infrared and mid-infrared detector array for spectral imaging. Infrared Phys. Technol., 50: 211–216

    Article  Google Scholar 

  42. Dong L., R. Yue, L. Liu, (2005), Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin film transistors as active elements. J. Microelectromech. Sys., 14(5): 1167–1177

    Article  CAS  Google Scholar 

  43. Neli R. R., D. Ioshiaki, J. A. Diniz, J. W. Swart, (2006), Development of process for far infrared sensor fabrication. Sens. Actuat., A 132: 400–406

    Article  CAS  Google Scholar 

  44. Calaza C., N. Viarani, M. Pedretti, A. Gottardi, A. Simoni, V. Zanini, M. Zen, (2006), An uncooled infrared focal plane array for low-cost applications fabricated with standard CMOS technology. Sens. Actuat., A 132: 129–138

    Article  CAS  Google Scholar 

  45. Wang S. B., B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, X. J. Yi, (2005), Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering. Sens. Actuat., A 117: 110–114

    Article  CAS  Google Scholar 

  46. Mantese J. V., A. L. Micheli, N. W. Schubring, M. W. Putty, M. P. Thompson, S. C. Chang, J. R. Troxell, L. Oberdier, J. Celinska, C. P. de Araujo, (2007), Enhanced pyroelectric sensitivity using ferroelectric active mode detection. Appl. Phys. Lett., 90: 113503

    Article  Google Scholar 

  47. Lee H. S., C. H. Leung, J. Shi, S. C. Chang, (2002), Electrostatically actuated copper-blade microrelays. Sens. Actuat., A 100(1): 105–113

    Article  CAS  Google Scholar 

  48. Nguyen C. T. C., L. P. B. Katrechi, G. M. Rebeiz, (1998), Micromachined devices for wireless communications. Proc. IEEE, 86(8): 1756–1768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, SC.(. (2012). MEMS in Automobiles. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_19

Download citation

Publish with us

Policies and ethics