Skip to main content

Microelectromechanical Sensor-Based System

  • Chapter
Microsystems and Nanotechnology

Abstract

The microelectromechanical sensor-based system refers to the microsensor group or the microsensor cluster and their composite application. The multi-sensor integration and fusion technology has been widely used in many fields. Because of its deficiency and limitation, an individual sensor can provide only partial information of the particular environment and thus lacks robustness, and composite application of multiple sensors of various types is needed to acquire integrated information about different environments or different types. The microsensor is an important part of a microelectromechanical system (MEMS). Development of a microsensor inevitably leads to the formation of a microelectromechanical sensor-based system, the properties, design, and application methods of which should be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Billar B., et al, (1995), Inertial navigation system for a mobile robot. IEEE Trans. Robotics Autom, 11(3): 328–342

    Article  Google Scholar 

  2. Savage P. G., (1998), Strapdown inertial navigation integration algorithm design. Part 2: Velocity and position algorithms. J. Guidance Contr. Dynam, 21(2): 208–221

    Article  Google Scholar 

  3. Caruso M. J., (2000), Applications of magnetic sensors for low cost compass systems. IEEE Position Location and Navigation Symposium: 177–184

    Google Scholar 

  4. Gebre E. D., R. C. Hayward, J. D. Powell, (2004), Design of multi-sensor attitude determination systems. IEEE Trans. Aerospace Electron. Sys., 40(2): 627–649

    Article  Google Scholar 

  5. Ruffin P. B., (2008), Progress in the development of gyroscopes for use in tactical weapon systems. In: Proceedings of SPIE—The International Society for Optical Engineering, Newport Beach, CA, USA, Mar. 6–8, 2–12

    Google Scholar 

  6. Gebre E. D., R. C. Hayward, J. D. Powell, (1998), A low cost GPS/Inertial attitude heading reference system (AHRS) for general aviation applications. IEEE PLANS, Position Location and Navigation Symposium, 518–525

    Google Scholar 

  7. Gebre E. D., G. H. Elkaim, J. D. Powell, B. W. Parkinson, (2000), Gyro-free quaternionbased attitude determination system suitable for implementation using low cost sensors. IEEE PLANS, Position Location and Navigation Symposium, 185–192

    Google Scholar 

  8. Marins J. L., X. P. Yun, E. R. Bachmann, et al, (2001), An extended Kalman filter for Quaternion-based orientation estimation using MARG sensors. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, USA, Oct. 29–Nov. 03, 2003–2011

    Google Scholar 

  9. Titterton D. H., J. L. Weston, Titterton, (1997), Strapdown Inertial Navigation Technology. Peter Peregrinis Ltd., London, UK, 19–57

    Google Scholar 

  10. Grasmeyer J. M., M. T. Keennon, (2001), Development of the black widow micro air vehicle. In Proc. AIAA, Paper AIAA-2001-0127

    Google Scholar 

  11. Zhu R., Z. Y. Zhou, X. F. Sun, (2001), MEMS navigation system for general vehicle, IEEE International Conference on Mechatronics and Machine Vision in Practice, Aug. 27–29

    Google Scholar 

  12. Wu J., J. B. Su, Y. G. Xi, (2001), Overview of multisensor integration and fusion. Robot, 23(2): 183–186

    Google Scholar 

  13. Qu G., et al., (1987), The Principle of Inertial Navigation, Beijing: Aviation Industry Press

    Google Scholar 

  14. Zhou Z. Y., S. S. Xiong, (2001), Basis for Computer Control, Tsinghua Univ., 2

    Google Scholar 

  15. Xiong S. S., Z. Y. Zhou, (2003), Neural filtering of colored noise based on Kalman filter structure. IEEE Trans. Instrum. Meas., 52(3): 742–747

    Article  Google Scholar 

  16. Zhu R., Z. Y. Zhou, (2002), Optical alignment applied for solving axis-misaligned errors in micro electro-mechanical systems. Int. J. Nonlinear. Sci. 3(SI 3–4): 345–348

    Google Scholar 

  17. Chou Y. F, M. H. Hsieh, (1996), Angular alignment for wafer bonding. In Proceedings of SPIE — The International Society for Optical Engineering 2879, Bellingham, WA, USA, Oct. 14–15, 291–297

    Google Scholar 

  18. Cheng X., Z. Fang, C. Yin, J. Guo, (1996), Adaptive straightness measurement system with dual frequency laser. Acta Optica Sinica 16(10): 1456–1459

    Google Scholar 

  19. Beach D. P., J. J. Rodden, (1990), Optical alignment with a beamwalk system, In Proceeding of SPIE—The International Society for Optical Engineering 1304, 94–99

    Google Scholar 

  20. Wang L. D., (2005), Research on Micro Air Vehicles Attitude and Airspeed Measurement Control Technique [D], Tsinghua University, China

    Google Scholar 

  21. KMZ52 Magnetic Field Sensor DATA SHEET, (2000), Jun09 Philips Semiconductors

    Google Scholar 

  22. Zhu J. H., Z. Y. Zhou, X. Y. Ye, D. C. Zhang, Y. Hao, T. Li, (2001), Design of micro tunneling magnetometer and research on its fabrication process, Microfabrication Technol, 1: 53–56

    Google Scholar 

  23. Liu S. W., J. D. Zhuang, J. C. Hung, H. N. Wang, (1990), Compass deviation analysis and compensation for a three-axis strapdown magnetic heading system. IFAC Symposia Series—Proceedings of a Triennial World Congress v 4 Aug 13–17, 471–474

    Google Scholar 

  24. Basile G., S. Pirani, M. Rinaldi, S. Varosi, (1996), Novel method for aircraft attitude estimation using magnetic field sensors and dynamic modeling, Southcon Conference Record Jun 25–27, 536–538

    Google Scholar 

  25. Giurgiutiu V., A. N. Zagrai, (2000), Characterization of piezoelectric wafer active sensors, J Intell Mater Sys Struct, 11(12): 959–976

    Google Scholar 

  26. Zhu R., Z. Y. Zhou, (2004), A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Sys. Rehabil. Eng. 12(2): 295–302

    Article  Google Scholar 

  27. Ruffin P. B., (2000), Progress in the development of gyroscopes for use in tactical weapon systems, In Proceedings of SPIE—The International Society for Optical Engineering, Newport Beach, CA, USA, Mar. 6–8, 2–12

    Google Scholar 

  28. Varadan V. K., et al, (2000), High sensitive and wide dynamic range navigation microsystem on a single chip. In Proceedings of SPIE—The International Society for Optical Engineering, Melbourne, Australia, Dec. 13–15, 134–140

    Google Scholar 

  29. Lovren N., J. K. Pieper, (1998), Error analysis of direction cosines and quaternion parameters techniques for aircraft attitude determination. IEEE Trans. Aerospace Electron. Sys., 34(3): 983–989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, Z., Zhu, R., Fu, X., Zhang, G. (2012). Microelectromechanical Sensor-Based System. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_17

Download citation

Publish with us

Policies and ethics