Skip to main content

Integrated Nanotechnology Based on MEMS

  • Chapter
Book cover Microsystems and Nanotechnology
  • 3986 Accesses

Abstract

In this chapter, after a brief review of integrated silicon-based MEMS fabrication techniques, MEMS techniques for nano-metric fabrication is emphasized. Using high selectivity and anisotropy of specific top-down micromachining methods, nanometric feature size can be fabricated for NEMS applications. Fabrication techniques of typical MEMS-made NEMS structures, such as nanotips, nanoapertures, nano junction, nanolines and nano-beams, are detailed in the chapter. Then, by integrating the nanoscale feature structure with the micrometric main body, typical integrated NEMS devices and their applications are addressed. The chapter also relates key size-effects of the integrated nanomechanical structures that have shown significant difference in electromechanical properties compared to their microscale counterparts, like the big difference in silicon Young’s modulus value. At last, the bright future of the integrated NEMS techniques and devices are outlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean K. E., (1978), Anisotropic etching of silicon, IEEE Trans.Electron Devices, ED-25: 1185–1193

    Article  CAS  Google Scholar 

  2. Robbins H. R. and B. Schwartz, (1976), Chemical etching of silicon—IV. Etching technology, J. Electrochem. Soc., 123(12): 1903–1909

    Article  Google Scholar 

  3. Bassous E., (1978), Fabrication of novel three-dimensional micro-structures by the anisotropic etching of (100) and (110) silicon, IEEE Trans. Electron Devices, ED-25: 178–1185

    Google Scholar 

  4. Li Xinxin, Minhang Bao and Shaoqun Shen, (1996), Maskless etching of three-dimensional silicon structures in KOH, Sensors and Actuators A, 571996): 47–52

    Google Scholar 

  5. Li Xinxin, Minhang Bao, (2001), Micro-machining of multi-thickness sensor array structures with dual-stage etching etching Technology, Journal of Micromechanics and Microengineering, 11(2001): 239–244

    CAS  Google Scholar 

  6. Schmidt M. A., (1998), Wafer-to-wafer bonding for microstructure formation, Proceedings of the IEEE, 86(8): 1575–1585

    Article  CAS  Google Scholar 

  7. Li Xinxin, M. H. Bao, and S. Q. Shen, (1997), Study on linearization of silicon capacitive pressure sensors, Sensors and Actuators A, 63(1): 1–6

    Article  Google Scholar 

  8. Li Xinxin, M. H. Bao, H. Yang, S. Q. Shen, D. R. Lu., (1999), A micro machined piezoresistive angular rate sensor with a composite beam structure, Sensors and Actuators A, 72: 217–223

    Article  CAS  Google Scholar 

  9. Peterson K., (1982), Silicon as a mechanical material, Proceedings of the IEEE, 70(5): 420–457

    Article  Google Scholar 

  10. Bustillo J. M., R. T. Howe, R. S. Muller, (1998), Surface micro-machining for microelectromechanical systems, Proceedings of the IEEE, 86(8): 1552–1574

    Article  CAS  Google Scholar 

  11. Li Xinxin, W. Y. Lee, Man Wong, (2000), Yitshak Zohar, Gas flow in constriction microdevices, Sensors and Actuators A, 83: 277–283

    Article  CAS  Google Scholar 

  12. Muller R. S., K. Y. Lau, (1998), Surface-micromachined micro-optical elements and systems, Proceedings of the IEEE, 86(8): 1705–1720

    Article  Google Scholar 

  13. Nguyen C. T.-C., L. P. B. Katehi, G. M. Rebeiz, (1998), Micromachined devices for wireless communications, Proceedings of the IEEE, 86(8): 1756–1768

    Article  Google Scholar 

  14. Guckel H., (1998), High-aspect-ratio micro-machining via deep X-ray lithography, Proceedings of the IEEE, 86(8): 1586–1593

    Article  CAS  Google Scholar 

  15. Lorenz H., et al., (1998), High aspect ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sens. Actuators A, 64(1): 33–39

    Article  CAS  Google Scholar 

  16. Shaw K. A., Z. L. Zhang, and N. C. MacDonald, (1994), SCREAM I: A single mask, singlecrystal silicon, reactive ion etching process for microelectromechanical structures, Sens. Actuators A, 40: 63–70

    Article  CAS  Google Scholar 

  17. Madou M., (1997), Fundamentals of Microfabrication, CRC Press LLC

    Google Scholar 

  18. Lee S., S. Park, D. Cho, (1999), The Surface/Bulk Micro-machining (SBM) Process: A New Method for Fabricating Released MEMS in Single Crystal Silicon, J. Microelectromech. Syst., 8(4): 409–416

    Article  CAS  Google Scholar 

  19. Mehra A., A. A. Ayon, I. A. Waitz, M. A. Schmidt, (1999), Microfabrication of hightemperature silicon devices using wafer bonding and deep reactive ion etching, Journal of Microelectromechanical Syatems, 8(2): 152–160

    Article  CAS  Google Scholar 

  20. Mehra A., X. Zhang, X. Ayon, A. Waitz, M. Schmidt, C. Spadaccini, (2000), A 6-wafer combustion system for a silicon micro gas turbine engine, Journal of Microelectromechanical Syatems, 9(4): 517–527

    Article  CAS  Google Scholar 

  21. Pourkamali S., A. Hashimura, R. Abdolvand, G. K. Ho, A. Erbil, F. Ayazi, (2000), High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100 nm transduction gaps, Journal of Microelectromechanical Syatems, 12(4): 487–496

    Article  Google Scholar 

  22. Kenny T. W., W. J. Kaiser, et al, (1991), Micromachined silicon tunnel sensors for motion detection, Appl. Phys. Lett., 58(1): 100–102

    Article  CAS  Google Scholar 

  23. Chang D. T., F. P. Stratton, R. L. Kubena, D. J. V. Kirby, R. J. Joyce, T. R. Schimert, R. W. Gooch, (2000), New fabrication techniques for high dynamic range tunneling sensors, Proceedings of SPIE, 4176: 68–73

    Article  CAS  Google Scholar 

  24. Binnig G., C. F. Quate, C. Gerber, (1986), Atomic force microscope, Phys. Rev. Letters, 56(9): 930

    Article  Google Scholar 

  25. Binnig G., H. Rohrer, (1987), Scanning tunneling microscopy-from birth to adolescence, Review of Modern Physics, 59(3), Part 1: 615

    Article  CAS  Google Scholar 

  26. Ravi T. S., R. B. Marcus, D. Liu, (1991), Oxidation sharpening of silicon tips, J. Vac. Sci. Technol. B, 9(6): 2733–2737

    Article  CAS  Google Scholar 

  27. Y. Zunxian, Xinxin Li et al, (2003), Micro cantilever probe array with integration of electro-thermal nano tip and piezoresistive sensor, Proceedings of IEEE Sensors’ 2003, 2: 830–833

    Article  Google Scholar 

  28. Minh Phan Ngoc, T. Ono, M. Esashi, (1999), Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy, APPLIED PHYSICS LETTERS, 75(26): 4076–4078

    Article  CAS  Google Scholar 

  29. Brugger J., R. A. Buser, N. F. de Rooij, (1992), Silicon cantilevers and tips for scanning force microscopy, Sens. Actuators, 34–3: 193–200

    Article  Google Scholar 

  30. L. Dong-Weon, T. Ono, T. Abe, and M. Esashi, (2002), Microprobe Array With Electrical Interconnection for Thermal Imaging and Data Storage, Journal of Microelectromechanical Syatems, 11(3): 215–221

    Article  Google Scholar 

  31. Takahito Ono, H. Miyashita and M. Esashi, (2002), Electric-field-enhanced growth of carbon nanotubes for scanning probe microscopy, Nanotechnology, 13: 62–64

    Article  Google Scholar 

  32. Phan Ngoc Minh, Le T. T. Tuyen, et al, (2003), Selective growth of carbon nano-tubes on Si microfabricated tips and application for electron field emitters, J. Vac. Sci. Technol., B 21(4): 1705–1709

    Article  Google Scholar 

  33. Yang Jinling, T. Ono, and M. Esashi, (2000), Mechanical Behavior of Ultrathin Microcantilever, Sensors and Actuators, A82: 102–107

    Google Scholar 

  34. Takahito Ono, X. X. Li, and D. W. Lee, (2001), Hidetoshi,Miyashita,Nano-metric Sensing and Processing with Micromachined Functional Probe, Technical Digest of Transducers’01, 11(1): 1062–1068

    Google Scholar 

  35. Li Xinxin, T. Ono, Y. L. Wang, M. Esashi, (2002), STUDY ON ULTRA-THIN MEMS CANTILEVERS-HIGH YIELD FABRICATION AND SIZE-EFFECT ON YOUNG’S MODULUS OF SILICON, Proceedings of IEEE International Conference on Micro Electro Mechanical Systems, 15: 427–430

    Google Scholar 

  36. Yang J., T. Ono, M. Esashi, (2002), Energy Dissipation in Submicrometer Thick Single-Crystal Silicon Cantilevers, Journal of Microelectromechanical Systems, 11(6): 775–783

    Article  CAS  Google Scholar 

  37. Yasumura K. Y., T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, (2000), “Quality factors in micro-and submicron-thick cantilevers,” J. Microelectromech. Syst., 9: 117–125

    Article  CAS  Google Scholar 

  38. Schwab K., E. A. Henriksen, J. M. Worlock, M. L. Roukes, (2000), Measurement of the quantum of thermal conductance, NATURE, 404(27): 974–977

    CAS  Google Scholar 

  39. Toshiyuki Toriyamaa, D. Funai and S. Sugiyama, Piezoresistance measurement on single crystal silicon nanowires, Journal of Applied Physics, 93(1): 561–565

    Google Scholar 

  40. Broughton J. Q., C. A. Meli, P. Vashishta, K. Kalia, (1997), Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nano-scale devices, Phys. Rev. B 56, 611

    Article  CAS  Google Scholar 

  41. Broughton J. Q., F. F. Abraham, N. Bernstein, E. Kaxiras, (1999), Concurrent coupling of length scales: Methodology and application, Phys. Rev. B, 60: 2391

    Article  CAS  Google Scholar 

  42. Rudd R. E., J. Q. Broughton, (1999), Atomistic simulation of MEMS resonators through the coupling of length scales, Journal of Modeling and Simulation of Microsystems, 1: 29

    Google Scholar 

  43. Namazu T., Y. Isono, T. Tanaka, (2002), J. Microelectromechanical Sys. 9: 450

    Article  Google Scholar 

  44. Li Xinxin, T. Ono, Y. L. Wang, M. Esashi, (2003), Ultra thin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus, Applied Physics Letters, Volume 83(15): 3081–3083

    Article  CAS  Google Scholar 

  45. Bao Min-hang, (2000), Micro Mechanical Transducers—pressure sensors, accelerometers and gyroscopes, Ed. by Simon Middelhoek, ELSEVIER, 2000, Chapter 2

    Google Scholar 

  46. Li Xinxin, T. Ono, R. Lin, M. Esashi, (2003), Resonance Enhancement of Micromachined Resonators with Strong Mechanical-coupling between Two Degrees of Freedom, Microelectronic Engineering, 65: 1–12

    Article  Google Scholar 

  47. Vettiger P., T. Albrecht et al, (2003), Thousands microcantilevers for highly parallel and ultra-dense data storage, IEEE International Electron Device Meeting-IEDM2003, Washington DC, Dec. 2003: 763–766

    Google Scholar 

  48. Yang Zunxian, X. X. Li, Y. L. Wang, H. F. Bao, M. Liu, (2004), Micro cantilever probe array integrated with Piezoresistive sensor, Microelectronics Journal, 35: 479–483

    Article  Google Scholar 

  49. Fritz J., M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J.K. Gimzewski, (2000), “Translating Biomolecular Recognition into Nanomechanics”, Science, 288: 316–318

    Article  CAS  Google Scholar 

  50. Hagleitner C., A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, H. Baltes, (2001), Smart single-chip gas sensor microsystem, Nature 414: 293–296

    Article  CAS  Google Scholar 

  51. Ono T., X. X. Li, and H. Miyashita, Masayoshi Esashi, (2003), Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator, REVIEW OF SCIENTIFIC INSTRUMENTS, VOLUME 74, NUMBER 3, MARCH, 2003, 1240–1243

    Article  CAS  Google Scholar 

  52. Ekinci K., X. Huang, M. Roukes, (2004), Ultrasensitive nanoelectromechanical mass detection, APPLIED PHYSICS LETTERS, 84(22): 4469–4471

    Article  CAS  Google Scholar 

  53. Xue M., H. Huang, C. A. Zorman, M. Mehregany, M. L. Roukes, (2003), Nanodevice motion at microwave frequencies, Nature, 421: 496

    Google Scholar 

  54. Rugar D., O. Zuger, S. Hoen, C. S. Yannoni, H. M. Vieth, R. D. Kendrick, (1994), Force detection of nuclear magnetic resonance, Science, 264: 1560–1563

    Article  CAS  Google Scholar 

  55. Barnes J. R., R. J. Stephenson, M. E. Welland, Ch. Gerber, J. K. Gimzewski, (1994), Photothermal spectroscopy with femtojoule sensitivity using a micromachined devices, Nature, 372: 79–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, X. (2012). Integrated Nanotechnology Based on MEMS. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_15

Download citation

Publish with us

Policies and ethics