Skip to main content

The Application of STM and AFM in Nanoprocess and Fabrication

  • Chapter
Microsystems and Nanotechnology
  • 4053 Accesses

Abstract

The scanning tunneling microscope (STM) and atomic force microscope (AFM) provide, not only ‘eyes’ but also ‘hands’ to investigate and modify nano-objects. Therefore, not only are high resolution images available to us, but they offer a means to construct objects in the microscopic world. In this chapter, we will introduce nanometer processing technologies based on STM and AFM.

During last decade fabrication and processing at the nanometer scale have achieved great advances, based on STM and AFM. Manipulation of individual atoms and molecules has been realized, and potential applications such as molecular devices have been demonstrated. Functionalized nanostructures have been fabricated with STM- and AFM-related techniques through various physical or chemical mechanisms. We expect that process and fabrication with STM and AFM will finally go from laboratory to factory as well as to thousands of families in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman R., (1961), Miniaturization, Reinhold

    Google Scholar 

  2. Drexler K. E., (1981), Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Nat. Acad. Sci. USA, 78: 5275–5278

    Article  CAS  Google Scholar 

  3. Drexler K. E., (1992), Nano-systems: molecular machinery, manufacturing, and computation. Wiley Interscience

    Google Scholar 

  4. Wickramasinghe H. K., (1989), Scientific American, 261: 74–81

    Article  Google Scholar 

  5. Binnig G., H. Rohrer, Ch. Gerber, E. Weibel, (1982), Surface studies by scanning tunneling microscopy. Physical Review Letters, 49: 57–61

    Article  Google Scholar 

  6. Binnig G., C. F. Quate, Ch. Gerber, (1986), Atomic force microscope. Physical Review Letters, 56: 930–933

    Article  Google Scholar 

  7. Eigler D. M., E. K. Schweizer, (1990), Positioning single atoms with a scanning tunnelling microscope. Nature, 344: 524–526

    Article  CAS  Google Scholar 

  8. Sugimoto Y., M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita, (2005), Atom inlays performed at room temperature using atomic force microscopy. Nature Materials, 4: 156–159

    Article  CAS  Google Scholar 

  9. Nilius N., T. M. Wallis, W. Ho, (2002), Development of one-dimensional band structure in artificial gold chains. Science, 297: 1853–1856

    Article  CAS  Google Scholar 

  10. Gimzewski J. K., C. Joachim, (1999), Nano-scale science of single molecules using local probes. Science, 283: 1683–1688

    Article  CAS  Google Scholar 

  11. Hu J., Y. Zhang, H. B. Gao, M. Q. Li, U. Hartmann, (2002), Artificial DNA patterns by mechanical nano-manipulation. Nano Letters, 2: 55–57

    Article  CAS  Google Scholar 

  12. Lee H. J., W. Ho, (1999), Single-bond formation and characterization with a scanning tunneling microscope. Science, 286: 1719–1722

    Article  CAS  Google Scholar 

  13. Okawa Y., M. Aono, (2001), Materials science: nano-scale control of chain polymerization. Nature, 409: 683–684

    Article  CAS  Google Scholar 

  14. Joachim C., J. K. Gimzewski, (1998), A nano-scale single-molecule amplifier and its consequences. Proceedings of the IEEE, 86, 184–190

    Article  CAS  Google Scholar 

  15. Song J., Z. Liu, C. Li, H. Chen, H. He, (1998), SPM-based nano-fabrication using a synchronization technique. Applied Physics A-Materials Science & Proceeding, 66: S715–S717

    Article  CAS  Google Scholar 

  16. Schoer J. K., R. M. Crooks, (1997), Scanning probe lithography. 4. Characterization of scanning tunneling microscope-induced patterns in n-alkanethiol self-assembled monolayers. Langmuir, 13: 2323–2332

    Article  CAS  Google Scholar 

  17. Zhao J., K. Uosaki, (2002), Formation of nano-patterns of a self-assembled monolayer (SAM) within a SAM of different molecules using a current sensing atomic force microscope. Nano Letters, 2: 137–140

    Article  CAS  Google Scholar 

  18. Dagata J. A., J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, (1990), Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters, 56: 2001–2003

    Article  CAS  Google Scholar 

  19. Avouris P. h., R. Martel, T. Hertel, R. L. Sandström, (1998), AFM-tip-induced and current-induced local oxidation of silicon and metals. Applied Physics A-Materials Science & Procedding, 66, S659–S667

    Article  CAS  Google Scholar 

  20. Gordon A. E., T. Fayfield, D. D. Litfin, T. K. Higman, (1995), Mechanisms of surface anodization produced by scanning probe microscopes. Journal of Vacuum Science & Technology B, 13: 2805–2808

    Article  CAS  Google Scholar 

  21. Avouris P. h., T. Hertel, R. Martel, (1997), Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nano-fabrication. Applied Physics Letters, 71: 285–287

    Article  CAS  Google Scholar 

  22. Dagata J. A., T. Inoue, J. Itoh, H. Yokoyama, (1998), Understanding scanned probe oxidation of silicon. Applied Physics Letters, 73: 271–273

    Article  CAS  Google Scholar 

  23. Maoz R., E. Frydman, S. R. Cohen, J. Sagiv, (2000), Constructive nano-lithography: site-defined silver self-assembly on nano-electrochemically patterned monolayer templates. Advanced Materials, 12: 424–429

    Article  CAS  Google Scholar 

  24. Maoz R., E. Frydman, S. R. Cohen, J. Sagiv, (2000), ‘Constructive nano-lithography’: inert monolayers as patternable templates for in-situ nano-fabrication of metal-semiconductororganic surface structures-a generic approach. Advanced Materials, 12: 725–730

    Article  CAS  Google Scholar 

  25. Hosaka S., S. Hosoki, T. Hasegawa, H. Koyanagi, T. Shintani, M. Miyamoto, (1995), Fabrication of nano-structures using scanning probe microscopes. Journal of Vacuum Science & Technology B, 13: 2813–2818

    Article  CAS  Google Scholar 

  26. Piner R. D., J. Zhu, F. Xu, S. Hong, C. A. Mirkin, (1999), ‘Dip-pen’ nano-lithography. Science, 283: 661–663

    Article  CAS  Google Scholar 

  27. Demers L. M., D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, (2002), Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 296: 1836–1838

    Article  CAS  Google Scholar 

  28. Wang Y., Y. Zhang, B. Li, J. Lü, J. Hu, (2007), Capturing and depositing one nanoobject at a time: single particle dip-pen nano-lithography. Applied Physics Letters, 90: 133102

    Article  Google Scholar 

  29. Liu X., S. Guo, C. A. Mirkin, (2003), Surface and site-specific ring-opening metathesis polymerization initiated by dip-pen nano-lithography. Angewandte Chemie International Edition, 42: 4785–4789

    Article  CAS  Google Scholar 

  30. Li B., Y. Zhang, S. Yan, J. Lu, M. Ye, M. Li, J. Hu, (2007), Positioning scission of single DNA molecules with nonspecific endonuclease based on nano-manipulation. Journal of the American Chemical Society, 129: 6668–6669

    Article  CAS  Google Scholar 

  31. Ginger D. S., H. Zhang, C. A. Mirkin, (2004), The evolution of dip-pen nano-lithography. Angewandte Chemie International Edition, 43: 30–45

    Article  Google Scholar 

  32. Salaita K., Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, C. A. Mirkin, (2006), Massively parallel dip-pen nano-lithography with 55000-pen two-dimensional arrays. Angewandte Chemie International Edition, 45: 7220–7223

    Article  CAS  Google Scholar 

  33. Xu S., G. Liu, (1997), Nano-meter-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir, 13: 127–129

    Article  Google Scholar 

  34. Chen J., M. A. Reed, C. L. Asplund, A. M. Cassell, M. L. Myrick, A. M. Rawlett, J. M. Tour, P. G. Van Patten, (1999), Placement of conjugated oligomers in an alkanethiol matrix by scanned probe microscope lithography. Applied Physics Letters, 75: 624–626

    Article  CAS  Google Scholar 

  35. Gorman C. B., R. L. Carroll, Y. He, F. Tian, R. Fuierer, (2000), Chemically well-defined lithography using self-assembled monolayers and scanning tunneling microscopy in nonpolar organothiol solutions. Langmuir, 16: 6312–6316

    Article  CAS  Google Scholar 

  36. Xu S., S. Miller, P. E. Laibinis, G. Liu, (1999), Fabrication of nano-meter scale patterns within self-assembled monolayers by nano-grafting. Langmuir, 15: 7244–7251

    Article  CAS  Google Scholar 

  37. Wadu-Mesthrige K., N. A. Amro, J. C. Garno, S. Xu, G. Liu, (2001), Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Biophysical Journal, 80: 1891–1899

    Article  CAS  Google Scholar 

  38. Liu M., N. A. Amro, C. S. Chow, G. Liu, (2002), Production of nano-structures of DNA on surfaces. Nano Letters, 2: 863–867

    Article  CAS  Google Scholar 

  39. Vasilev C., H. Heinzelmann, G. Reiter, (2004), Controlled melting of individual, nanometer-sized, polymer crystals confined in a block copolymer mesostructure. Journal of Polymer Science: Part B: Polymer Physics, 42: 1312–1320

    Article  CAS  Google Scholar 

  40. Vettiger P., G. Cross, M. Despont, M. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, (2002), The ‘millipede’ — nanotechnology entering data storage. IEEE Transactions on Nanotechnology, 1: 39–55

    Article  Google Scholar 

  41. Gotsmann B., U. Duerig, J. Frommer, C. J. Hawker, (2006), Exploiting chemical switching in a diels-alder polymer for nano-scale probe lithography and data storage. Advanced Function Materials, 16: 1499–1505

    Article  CAS  Google Scholar 

  42. Fischer H., (2005), Probing the surface Tg of monodisperse PS by local thermal analysis. Macromolecules, 38: 844–850

    Article  CAS  Google Scholar 

  43. King W. P., S. Saxena, B. A. Nelson, B. L. Weeks, R. Pitchimani, (2006), Nano-scale thermal analysis of an energetic material. Nano Letters, 6: 2145–2149

    Article  CAS  Google Scholar 

  44. Szoszkiewicz R., T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, (2007), High-speed, sub-15 nm feature size thermo-chemical nano-lithography. Nano Letters, 7: 1064–1069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Hu, J., Xiao, X. (2012). The Application of STM and AFM in Nanoprocess and Fabrication. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_13

Download citation

Publish with us

Policies and ethics