Skip to main content

Advancement of Laser-Assisted and Roller-Based Nanoimprinting Technology

  • Chapter
Microsystems and Nanotechnology
  • 4004 Accesses

Abstract

Nanoimprinting technology was first developed in 1995 and is now recognized as one of the most promising approaches for large-area and low-cost fabrication of nanostructures. In this chapter, three types of laser-assisted and roller-based nanoimprinting and contact-printing methods developed in recent years will be addressed. First of all, a laser-assisted roller imprinting (LARI) method which can directly transfer the pattern from a quartz mold to a silicon substrate is introduced. The advantage of LARI is that the pattern transformation is direct, fast, and without any chemical etching processes. Secondly, a light-assisted metal film patterning (LAMP) method which transfers a patterned metal film directly from a silicon mold to a substrate is discussed. The pattern transformation relies on both mechanical contact pressure and optical heating at the interface. Metal patterns with 100 nm feature size can be easily transferred in laboratory using simple equipments and setups. Finally, a contact-transfer and mask-embedded lithography (CMEL) is proposed which cleverly arranges pure mechanical forces and surface energy difference to achieve the patterning of nanostructures on various kinds of substrates. Future developments and potential applications of these roller-based nanoimprinting and nano-patterning methods will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou S. Y., P. R. Krauss, and P. J. Renstrom, (1995), Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett., 67(21): 3114–3116

    Article  CAS  Google Scholar 

  2. Chou S. Y., P. R. Krauss, and P. J. Renstrom, (1996), “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6): 4129–4133

    Article  CAS  Google Scholar 

  3. Chou S. Y., P. R. Krauss, and P. J. Renstrom, (1996), “Imprint lithography with 25-nanometer resolution,” Science, 272(5258): 85–87

    Article  CAS  Google Scholar 

  4. Chou S. Y., and P. R. Krauss, (1997), “Imprint Lithography with Sub-10 nm Feature Size and High Throughput,” Microelect. Eng., 35(1–4): 237–240

    Article  CAS  Google Scholar 

  5. Guo L., P. R. Krauss, and S. Y. Chou, (1997), Nanoscale silicon field effect transistors fabricated using imprint Lithography, Appl. Phys. Lett., 71(13): 1881–1883

    Article  CAS  Google Scholar 

  6. Pepin A., P. Youinou, V. Studer, A. Lebib, Y. Chen, (2002), “Nanoimprint lithography for the fabrication of DNA electrophoresis chips,” Microelect. Eng., 61–62: 927–932

    Article  Google Scholar 

  7. Zhang W., and S. Y. Chou, (2003), “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Appl. Phys. Lett., 83(8): 1632–1634

    Article  CAS  Google Scholar 

  8. Li M., L. Chen, W. Zhang, and S. Y Chou, (2003), “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers, Nanotechnology, 14(1): 33–36

    Article  CAS  Google Scholar 

  9. Colburn M., S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, (1999), “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning” Proc. SPIE 3676: 379–389

    Article  CAS  Google Scholar 

  10. Bailey T., B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, (2000), “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol., B 18(6): 3572–3577

    Article  CAS  Google Scholar 

  11. Colburn M., T. Bailey, B.J. Choi, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, (2001), “Development and advantages of step-and-flash lithography,” Solid State Technolgy, 44(7): 67–77

    Google Scholar 

  12. Jung G. Y., S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, and R. S. Williams, (2004), “Fabrication of a 34 ×34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography,” Nano Letters, 4(7): 1225–1229

    Article  CAS  Google Scholar 

  13. Stewart M. D., S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, C. G. Willson, (2005), “Nano-fabrication with step and flash imprint lithography,” J. Microlith., Microfab. and Microsys, 4(1): 1–6

    Google Scholar 

  14. Dickey M. D., and C. G. Willson, (2006), “Kinetic Parameters for Step and Flash Imprint Lithography Photopolymerization,” AIChE Journal, 52(2): 777–784

    Article  CAS  Google Scholar 

  15. Khusnatdinov N., G. Doyle, M. Miller, N. Stacey, M. Watts, and D. L. LaBrake, (2006), “Fabrication of Nano and Micro Optical Elements by Step and Flash Imprint Lithography,” Proc. of SPIE, 6110: 61100K1–10

    Google Scholar 

  16. Xia Y., M. Mrksich, E. Kim, and G. M. Whitesides, (1995), “Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication,” J. Am. Chem. Soc., 117(37): 9576–9577

    Article  CAS  Google Scholar 

  17. Xia Y., and G. M. Whitesides, (1995), “Reduction in the Size of Features of Patterned SAMs Generated by Microcontact Printing with Mechanical Compression of the Stamp,” Adv. Mater., 7(8): 471–473

    Article  CAS  Google Scholar 

  18. Lahiri J., E. Ostuni, and G. M. Whitesides, (1999), “Patterning Ligands on Reactive SAMs by Microcontact Printing, Langmuir, 15(6): 2055–2060

    Article  CAS  Google Scholar 

  19. Deng T., M. Prentiss, and G. M. Whitesides, (2002), “Fabrication of magnetic microfiltration systems using soft lithography,” Appl. Phys. Letts., 80(3): 461–463

    Article  CAS  Google Scholar 

  20. Loo Y.-L., J. W. P. Hsu, R. L. Willett, K. W. Baldwin, K. W. West, and J. A. Rogers, (2002), “High-resolution transfer printing on GaAs surfaces using alkane dithiol monolayers,” J. Vac. Sci. Technol., B 20(6): 2853–2856

    Article  CAS  Google Scholar 

  21. Wolfe B. D., J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy, and M. Prentiss, (2004), “Fabrication of planar optical waveguides by electrical microcontact printing,” Appl. Phys. Lett., 84(10): 1623–1625

    Article  CAS  Google Scholar 

  22. Xia Y., and G. M. Whitesides, (1998), “Soft Lithography,” Annu. Rev. Mater. Sci., 28: 153–184

    Article  CAS  Google Scholar 

  23. Gates B. D., Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, (2005), “New Approaches to Nano-fabrication: Molding, Printing, and Other Techniques,” Chem. Rev., 105(4): 1171–1196

    Article  CAS  Google Scholar 

  24. Guo L. J., (2007), “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater., 19(4): 495–513

    Article  CAS  Google Scholar 

  25. Chou S. Y., C. Keimel, and J. Gu, (2002), “Ultrafast and direct imprint of nanostructures in silicon,” Nature, 417(6891): 835–837

    Article  CAS  Google Scholar 

  26. Cui B., W. Wu, C. Keimel, and S. Y. Chou, (2006), “Filling of nano-via holes by laserassisted direct imprint,” Microelect. Eng., 83(4–9): 1547–1550

    Article  CAS  Google Scholar 

  27. Li L. P., Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, (2004), “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology, 15(3): 333–336

    Article  CAS  Google Scholar 

  28. Li L. P., Y. F. Lu, D. W. Doerr, and D. R. Alexander, (2004), “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys., 96(9): 5144–5151

    Article  CAS  Google Scholar 

  29. Xu X., C. P. Grigoropoulos and R. E. Russo, (1994), “Measurement of solid-liquid interface temperature during pulsed excimer laser melting of polycrystalline silicon films,” Phys. Re. Lett., 65(14): 1745–1747

    CAS  Google Scholar 

  30. Sasik R., and R. Cerny, (1991), “Numerical solution of the non-isothermal moving boundary problem in heat conduction,” Comput. Phys. Communicat., 64(2): 241–251

    Article  Google Scholar 

  31. Tokarev V. N., and A. F. H. Kaplan, (1999), “Analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys., 86(5): 2836–2846

    Article  CAS  Google Scholar 

  32. Hsiao F.-B., C.-P. Jen, D.-B. Wang, C.-H. Chuang, Y.-C. Lee, C.-P. Liu, H.-J. Hsu, (2006), “An analytical modeling of heat transfer for laser-assisted nano-imprinting processes,” Comput. Mech., 37(2): 173–181

    Article  Google Scholar 

  33. Lee Y. C., M.-H. Chung, F.-Y. Chang, “An elastodynamic modeling of laser assisted direct imprinting (LADI) process,” submitted to journal for publication

    Google Scholar 

  34. Achenbach J. D., Wave Propagation in Elastic Solids (Elsevier North-Holland, New York, 1973), Chap. 1

    Google Scholar 

  35. Bird R. B., R. C. Armstrong, and O. Hassager, (1987), Dynamics of Polymeric Liquids, 2nd ed. Wiely, New York, 20

    Google Scholar 

  36. Kim M.-U., K. W. Kim, Y.-H. Cho, and B. M. Kwak, (2001), “Hydrodynamic force on a plate near the plane wall. Part II: Plate in squeezing motion,” Fluid Dynamics Research, 29(3): 171–198

    Article  Google Scholar 

  37. Lee Y.-C., C.-Y. Chiu, C.-H. Chen, F.-Y. Chang, “Roller-based laser assisted direct imprinting for large area and continuous nano-fabrication,” Microelectronic Engineering, 87(1): 34–40

    Google Scholar 

  38. Tan H., A. Gilbertson, and S. Y. Chou, (1998), “Roller nanoimprint lithography” J. Vac. Sci. Technol., B 16(6): 3926–3928

    Article  CAS  Google Scholar 

  39. Rogers J. A., Z. Bao, A. Makhija, and P. Braun, (1999), “Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits,” Adv. Mater., 11(5): 741–745

    Article  CAS  Google Scholar 

  40. Chen C.-H., and Y.-C. Lee, (2007), “Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating,” J. Micromech. Microeng., 17(7): 1252–1256

    Article  CAS  Google Scholar 

  41. Jung G. Y., Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, (2005), “Improved pattern transfer in nanoimprint lithography at 30 nm half-pitch by substrate-surface functionalization,” Langmuir, 21(14): 1158–1161

    Article  CAS  Google Scholar 

  42. Poate J. M., and J. W. Mayer, Laser Annealing of Semiconductors (Academic Press, New York, 1982) Chapters 3 and 4

    Google Scholar 

  43. Lee Y.-C., and C.-Y. Chiu, “A new micro/nano-lithography based on contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng; 18(7): 075013–075019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, YC., Hsiao, FB. (2012). Advancement of Laser-Assisted and Roller-Based Nanoimprinting Technology. In: Zhou, Z., Wang, Z., Lin, L. (eds) Microsystems and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18293-8_12

Download citation

Publish with us

Policies and ethics